dc.creatorLópez, Julio
dc.creatorLópez, Rubén
dc.creatorRamírez Cabrera, Héctor
dc.date.accessioned2012-06-18T15:47:56Z
dc.date.available2012-06-18T15:47:56Z
dc.date.created2012-06-18T15:47:56Z
dc.date.issued2012-02
dc.identifierNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Volume: 75 Issue: 3 Pages: 1441-1448 Published: FEB 2012
dc.identifierDOI: 10.1016/j.na.2011.07.058
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125645
dc.description.abstractIn this paper we introduce a new class, called F, of linear transformations defined from the space of real n x n symmetric matrices into itself. Within this new class, we show the equivalence between Q- and Q(b)-transformations. We also provide conditions under which a linear transformation belongs to F. Moreover, this class, when specialized to square matrices of size n, turns out to be the largest class of matrices for which such equivalence holds true in the context of standard linear complementary problems.
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.subjectSemidefinite complementarity problems
dc.titleCharacterizing Q-linear transformations for semidefinite linear complementarity problems
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución