dc.creatorGouet Bañares, Raúl
dc.creatorLópez, F. Javier
dc.creatorSanz, Gerardo
dc.date.accessioned2012-06-08T16:17:30Z
dc.date.available2012-06-08T16:17:30Z
dc.date.created2012-06-08T16:17:30Z
dc.date.issued2012
dc.identifierCommunications in Statistics—Theory and Methods, 41: 309–324, 2012
dc.identifierDOI: 10.1080/03610926.2010.522753
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125633
dc.description.abstractNear-records in a sequence of random variables Xn n ≥ 1 are observations within a fixed distance of the current maximum. More precisely, as defined by Balakrishnan et al. (2005), Xn is a near-record if Xn ∈ Mn−1 − a Mn−1 , where Mn = max X1 Xn and a > 0 is fixed. In this article we establish the asymptotic normality of Dn = n i=1 1 Xi∈ Mi−1−a Mi−1 , the number of nearrecords among the first n observations, when the underlying random variables are independent and identically distributed, with common continuous distribution.
dc.languageen
dc.publisherTaylor & Francis
dc.subjectCentral limit theorem
dc.titleCentral Limit Theorem for the Number of Near-Records
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución