Artículo de revista
Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile
Fecha
2012Registro en:
Bull Volcanol (2012) 74:511–531
DOI 10.1007/s00445-011-0545-1
Autor
Whelley, Patrick L.
Jay, J.
Calder, E. S.
Pritchard, M. E.
Cassidy, N. J.
Alcaraz, S.
Pavez, A.
Institución
Resumen
Unconsolidated pyroclastic flow deposits of the
1993 eruption of Lascar Volcano, Chile, have, with time,
become increasingly dissected by a network of deeply
penetrating fractures. The fracture network comprises
orthogonal sets of decimeter-wide linear voids that form a
pseudo-polygonal grid visible on the deposit surface. In this
work, we combine shallow surface geophysical imaging
tools with remote sensing observations and direct field
measurements of the deposit to investigate these fractures
and their underlying causal mechanisms. Based on ground
penetrating radar images, the fractures are observed to have
propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to
1 cm/year occurred between 1993 and 1996 with continued
subsidence occurring at a slower rate thereafter. In situ
measurements show that 1 m below the surface, the 1993
deposits remain 5°C to 15°C hotter, 18 years after
emplacement, than adjacent deposits. Based on the observed
subsidence as well as estimated cooling rates, the fractures are
inferred to be the combined result of deaeration, thermal
contraction, and sedimentary compaction in the months to
years following deposition. Significant environmental factors,
including regional earthquakes in 1995 and 2007, accelerated
settling at punctuated moments in time. The spatially variable
fracture pattern relates to surface slope and lithofacies
variations as well as substrate lithology. Similar fractures
have been reported in other ignimbrites but are generally
exposed only in cross section and are often attributed to
formation by external forces. Here we suggest that such
interpretations should be invoked with caution, and deformation
including post-emplacement subsidence and fracturing of
loosely packed ash-rich deposits in the months to years postemplacement
is a process inherent in the settling of pyroclastic
material.