dc.creatorCominetti Cotti-Cometti, Roberto
dc.creatorPeypouquet, J.
dc.creatorSorin, S.
dc.date.accessioned2010-01-14T13:09:54Z
dc.date.available2010-01-14T13:09:54Z
dc.date.created2010-01-14T13:09:54Z
dc.date.issued2008-12-15
dc.identifierJOURNAL OF DIFFERENTIAL EQUATIONS Volume: 245 Issue: 12 Pages: 3753-3763 Published: DEC 15 2008
dc.identifier0022-0396
dc.identifier10.1016/j.jde.2008.08.007
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125118
dc.description.abstractWe consider the Tikhonov-like dynamics -(u) over dot(t) is an element of A(u(t)) + epsilon(t)u(t) where A is a maximal monotone operator on a Hilbert space and the parameter function epsilon(t) tends to 0 as t -> infinity with integral(infinity)(0)epsilon(t) dt = infinity. When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u(t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A(-1)(0) provided that the function epsilon(t) has bounded variation, and provide a counterexample when this property fails.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.subjectPROXIMAL POINT ALGORITHM
dc.titleStrong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución