dc.creatorClerc Gavilán, Marcel
dc.creatorEncina, Pablo C.
dc.creatorTirapegui Zurbano, Enrique
dc.date.accessioned2010-01-13T20:12:24Z
dc.date.available2010-01-13T20:12:24Z
dc.date.created2010-01-13T20:12:24Z
dc.date.issued2008-07
dc.identifierINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS Volume: 18 Issue: 7 Pages: 1905-1915 Published: JUL 2008
dc.identifier0218-1274
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125113
dc.description.abstractA generic stationary instability that arises in quasi-reversible systems is studied. It is characterized by the confluence of three eigenvalues at the origin of complex plane with only one eigenfunction. We characterize the dynamics through the normal form that exhibits in particular, Shilnikov chaos, for which we give an analytical prediction. We construct a simple mechanical system, Shilnikov particle, which exhibits this quasi-reversal instability and displays its chaotic behavior.
dc.languageen
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.subjectBifurcation theory
dc.titleSHILNIKOV BIFURCATION: STATIONARY QUASI-REVERSAL BIFURCATION
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución