dc.creator | Boyle, Mike | |
dc.creator | Schraudner, Michael | |
dc.date.accessioned | 2010-01-11T18:43:46Z | |
dc.date.available | 2010-01-11T18:43:46Z | |
dc.date.created | 2010-01-11T18:43:46Z | |
dc.date.issued | 2008-04 | |
dc.identifier | ERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 28 Pages: 367-387 Part: Part 2 Published: APR 2008 | |
dc.identifier | 0143-3857 | |
dc.identifier | 10.1017/S0143385707000697 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/125075 | |
dc.description.abstract | In this paper, a group shift is an expansive action of Z(d) on a compact metrizable zero-dimensional group by continuous automorphisms. All group shifts factor topologically onto equal-entropy Bernoulli shifts; abelian group shifts factor by continuous group homomorphisms onto canonical equal-entropy Bernoulli group shifts; and completely positive entropy abelian group shifts are weakly algebraically equivalent to these Bernoulli factors. A completely positive entropy group (even vector) shift need not be topologically conjugate to a Bernoulli shift, and the Pinsker factor of a vector shift need not split topologically. | |
dc.language | en | |
dc.publisher | CAMBRIDGE UNIV PRESS | |
dc.subject | COMPACT ABELIAN-GROUPS | |
dc.title | Z(d) group shifts and Bernoulli factors | |
dc.type | Artículo de revista | |