dc.creatorBonomo, Flavia
dc.creatorChudnovsky, Maria
dc.creatorDurán Maggiolo, Guillermo
dc.date.accessioned2010-01-11T16:19:56Z
dc.date.available2010-01-11T16:19:56Z
dc.date.created2010-01-11T16:19:56Z
dc.date.issued2008-04-01T18:52:54Z
dc.identifierDISCRETE APPLIED MATHEMATICS Volume: 156 Issue: 7 Pages: 1058-1082 Published: APR 1 2008
dc.identifier0166-218X
dc.identifier10.1016/j.dam.2007.05.048
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125073
dc.description.abstractA clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs.
dc.languageen
dc.publisherELSEVIER
dc.subjectALGORITHMIC ASPECTS
dc.titlePartial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución