dc.creatorÁlvarez Daziano, Felipe
dc.creatorBolte, Jérome
dc.creatorMunier, Julien
dc.date.accessioned2010-01-06T14:26:57Z
dc.date.available2010-01-06T14:26:57Z
dc.date.created2010-01-06T14:26:57Z
dc.date.issued2008-04
dc.identifierFOUNDATIONS OF COMPUTATIONAL MATHEMATICS Volume: 8 Issue: 2 Pages: 197-226 Published: APR 2008
dc.identifier1615-3375
dc.identifier10.1007/s10208-006-0221-6
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125041
dc.description.abstractWe consider the problem of nding a singularity of a vector eld X on a complete Riemannian manifold. In this regard we prove a uni ed result for local convergence of Newton's method. Inspired by previous work of Zabrejko and Nguen on Kantorovich's majorant method, our approach relies on the introduction of an abstract one-dimensional Newton's method obtained using an adequate Lipschitz-type radial function of the covariant derivative of X. The main theorem gives in particular a synthetic view of several famous results, namely the Kantorovich, Smale and Nesterov-Nemirovskii theorems. Concerning real-analytic vector elds an application of the central result leads to improvements of some recent developments in this area.
dc.languageen
dc.publisherSPRINGER
dc.subjectINTERIOR-POINT METHODS
dc.titleA unifying local convergence result for Newton's method in Riemannian manifolds
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución