Minimal Eulerian circuit in a labeled digraph
dc.creator | Moreno, Eduardo | |
dc.creator | Matamala Vásquez, Martín | |
dc.date.accessioned | 2009-05-27T17:32:44Z | |
dc.date.available | 2009-05-27T17:32:44Z | |
dc.date.created | 2009-05-27T17:32:44Z | |
dc.date.issued | 2006 | |
dc.identifier | LATIN 2006: THEORETICAL INFORMATICS Book Series: LECTURE NOTES IN COMPUTER SCIENCE Volume: 3887 Pages: 737-744 Published: 2006 | |
dc.identifier | 0302-9743 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/124941 | |
dc.description.abstract | Let G = (V, A) be an Eulerian directed graph with an arc-labeling. In this work we study the problem of finding an Eulerian circuit of lexicographically minimal label among all Eulerian circuits of the graph. We prove that this problem is NP-hard by showing a reduction from the DIRECTED-HAMILTONIAN-CIRCUIT problem. If the labeling of the arcs is such that. arcs going out from the same vertex have different labels, the problem can be solved in polynomial time. We present an algorithm to construct the unique Eulerian circuit of lexicographically minimal label starting at a fixed vertex. Our algorithm is a recursive greedy algorithm which runs in O(vertical bar A vertical bar) steps. We also show an application of this algorithm to construct the minimal De Bruijn sequence of a language. | |
dc.language | en | |
dc.publisher | SPRINGER-VERLAG BERLIN | |
dc.subject | DE-BRUIJN | |
dc.title | Minimal Eulerian circuit in a labeled digraph | |
dc.type | Artículo de revista |