dc.creatorJofré Cáceres, René
dc.creatorRivera Cayupi, Jorge
dc.date.accessioned2009-04-13T18:05:00Z
dc.date.available2009-04-13T18:05:00Z
dc.date.created2009-04-13T18:05:00Z
dc.date.issued2006-08
dc.identifierMATHEMATICAL PROGRAMMING Volume: 108 Issue: 1 Pages: 37-51 Published: AUG 2006
dc.identifier0025-5610
dc.identifierhttps://repositorio.uchile.cl/handle/2250/124898
dc.description.abstractIn this paper we proved a nonconvex separation property for general sets which coincides with the Hahn-Banach separation theorem when sets are convexes. Properties derived from the main result are used to compute the subgradient set to the distance function in special cases and they are also applied to extending the Second Welfare Theorem in economics and proving the existence of singular multipliers in Optimization.
dc.languageen
dc.publisherSPRINGER
dc.subjectAPPROXIMATE SUBDIFFERENTIALS
dc.titleA nonconvex separation property and some applications
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución