dc.creatorCortez, María Isabel
dc.date.accessioned2009-03-25T10:33:41Z
dc.date.available2009-03-25T10:33:41Z
dc.date.created2009-03-25T10:33:41Z
dc.date.issued2006-10
dc.identifierERGODIC THEORY AND DYNAMICAL SYSTEMS Volume: 26 Pages: 1417-1441 Part: Part 5 Published: OCT 2006
dc.identifier0143-3857
dc.identifierhttps://repositorio.uchile.cl/handle/2250/124811
dc.description.abstractIn this paper we show that, for every Choquet simplex K and for every d > 1, there exists a Z(d)-Toeplitz system whose set of invariant probability measures is affine homeomorphic to K. Then, we conclude that K may be realized as the set of invariant probability measures of a tiling system (Omega(T), R-d).
dc.languageen
dc.publisherCAMBRIDGE UNIV PRESS
dc.subjectTOEPLITZ FLOWS
dc.titleRealization of a Choquet simplex as the set of invariant probability measures of a tiling system
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución