dc.creatorBultinck, Patrick
dc.creatorCárdenas Valencia, Carlos
dc.creatorFuentealba Rosas, Patricio
dc.creatorJohnson, Paul A.
dc.creatorAyers, Paul W.
dc.date.accessioned2015-01-05T19:56:34Z
dc.date.available2015-01-05T19:56:34Z
dc.date.created2015-01-05T19:56:34Z
dc.date.issued2014
dc.identifierJ. Chem. Theory Comput. 2014, 10, 202−210
dc.identifierDOI: 10.1021/ct400874d
dc.identifierhttps://repositorio.uchile.cl/handle/2250/119891
dc.description.abstractA system in a spatially (quasi-)degenerate ground state responds in a qualitatively different way to a change in the external potential. Consequently, the usual method for computing the Fukui function, namely, taking the difference between the electron densities of the N- and N ± 1 electron systems, cannot be applied directly. It is shown how the Fukui matrix, and thus also the Fukui function, depends on the nature of the perturbation. One thus needs to use degenerate perturbation theory for the given perturbing potential to generate the density matrix whose change with respect to a change in the number of electrons equals the Fukui matrix. Accounting for the degeneracy in the case of nitrous oxide reveals that an average over the degenerate states differs significantly from using the proper density matrix. We further show the differences in Fukui functions depending on whether a Dirac delta perturbation is used or an interaction with a true point charge (leading to the Fukui potential).
dc.languageen
dc.publisherAmerican Chemical Society
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleHow to Compute the Fukui Matrix and Function for Systems with (Quasi-)Degenerate States
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución