dc.creatorFernández, Claudio
dc.creatorLizama, Carlos
dc.creatorPoblete Oviedo, Verónica
dc.date.accessioned2010-06-17T19:04:16Z
dc.date.available2010-06-17T19:04:16Z
dc.date.created2010-06-17T19:04:16Z
dc.date.issued2010
dc.identifierMathematical Problems in Engineering, Volume 2010, Article ID 196956, 15 pages
dc.identifierdoi:10.1155/2010/196956
dc.identifierhttps://repositorio.uchile.cl/handle/2250/119041
dc.description.abstractWe study abstract equations of the form λu t u t c2Au t c2μAu t f t , 0 < λ < μ which is motivated by the study of vibrations of flexible structures possessing internal material damping. We introduce the notion of α; β; γ -regularized families, which is a particular case of a; k - regularized families, and characterize maximal regularity in Lp-spaces based on the technique of Fourier multipliers. Finally, an application with the Dirichlet-Laplacian in a bounded smooth domain is given.
dc.languageen
dc.publisherHindawi Publishing Corporation
dc.titleMaximal Regularity for Flexible Structural Systems in Lebesgue Spaces
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución