dc.creatorBehn Von Schmieden, Antonio
dc.creatorCorrea, Iván
dc.creatorHentzel, Irvin Roy
dc.date.accessioned2010-04-05T19:15:40Z
dc.date.available2010-04-05T19:15:40Z
dc.date.created2010-04-05T19:15:40Z
dc.date.issued2008
dc.identifierCommunications in Algebra, 36: 132–141, 2008
dc.identifier0092-7872 print
dc.identifierDOI: 10.1080/00927870701665248
dc.identifierhttps://repositorio.uchile.cl/handle/2250/119017
dc.description.abstractIn this article we study nonassociative rings satisfying the polynomial identity x yz = y zx , which we call “cyclic rings.” We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras.
dc.languageen
dc.publisherTaylor & Francis Group
dc.subjectNonassociative semiprime nilpotent identity algebra
dc.titleSEMIPRIMALITY AND NILPOTENCY OF NONASSOCIATIVE RINGS SATISFYING x (yz) = y (zx)
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución