Tesis
Image Descriptions for Sketch Based Image Retrieval
Autor
Saavedra Rondo, José Manuel
Institución
Resumen
Debido al uso masivo de Internet y a la proliferación de dispositivos capaces de generar información multimedia, la búsqueda y recuperación de imágenes basada en contenido se han convertido en áreas de investigación activas en ciencias de la computación. Sin embargo, la aplicación de búsqueda por contenido requiere una imagen de ejemplo como consulta, lo cual muchas veces puede ser un problema serio, que imposibilite la usabilidad de la aplicación. En efecto, los usuarios comúnmente hacen uso de un buscador de imágenes porque no cuentan con la imagen deseada. En este sentido, un modo alternativo de expresar lo que el usuario intenta buscar es mediante un dibujo a mano compuesto, simplemente, de trazos, sketch, lo que onduce a la búsqueda por imágenes basada en sketches. Hacer este tipo de consultas es soportado, además, por el hecho de haberse incrementado la accesibilidad a dispositivos táctiles, facilitando realizar consultas de este tipo.
En este trabajo, se proponen dos métodos aplicados a la recuperación de imágenes basada en sketches. El primero es un método global que calcula un histograma de orientaciones usando gradientes cuadrados. Esta propuesta exhibe un comportamiento sobresaliente con respecto a otros métodos globales. En la actualidad, no existen métodos que aprovechen la principal característica de los sketches, la información estructural. Los sketches carecen de color y textura y representan principalmente la estructura de los objetos que se quiere buscar. En este sentido, se propone un segundo método basado en la representación estructural de las imágenes mediante un conjunto de formas primitivas que se denominan keyshapes.
Los resultados de nuestra propuesta han sido comparados con resultados de métodos actuales, mostrando un incremento significativo en la efectividad de la recuperación. Además, puesto que nuestra propuesta basada en keyshapes explota una característica novedosa, es posible combinarla con otras técnicas para incrementar la efectividad de los resultados. Así, en este trabajo se ha evaluado la combinación del método propuesto con el método propuesto por Eitz et al., basado en Bag of Words, logrando un aumento de la efectividad de casi 22%.
Finalmente, con el objetivo de mostrar el potencial de nuestra propuesta, se muestran dos aplicaciones. La primera está orientada al contexto de recuperación de modelos 3D usando un dibujo a mano como consulta. En esta caso, nuestros resultados muestran competitividad con el estado del arte. La segunda aplicación explota la idea de buscar objetos basada en la estructura para mejorar el proceso de segmentación. En particular, mostramos una aplicación de segmentación de manos en ambientes semi-controlados.