dc.contributorMartínez-Agüero, María
dc.creatorLyons Molano, Jessica Jannethe
dc.date.accessioned2018-07-10T16:04:27Z
dc.date.available2018-07-10T16:04:27Z
dc.date.created2018-07-10T16:04:27Z
dc.date.issued2018
dc.identifierhttp://repository.urosario.edu.co/handle/10336/18145
dc.description.abstractFolate is not synthesized by humans, but can be found in natural and synthetic sources such as folic acid; its importance lies in the participation in the maintenance of cellular homeostasis, gene regulation processes, nucleotide synthesis, DNA replication, amino acid production and homocysteine regulation. In order to fulfill its functions, folate is metabolized in the folic acid cycle, where the participation of the MTHFR enzyme is fundamental. Alterations in this enzyme, such as those caused by the polymorphisms of the MTHFR gene, are related to susceptibility for important diseases and some weaken the process of viral replication avoiding the progression to diseases, this is the case of HIV. The c.677 C> T and c.1298 A> C MTHFR polymorphisms, have been studied associated with different pathologies related with methionine recycling or cell cycle disorders, however, there are few population genetic data from the Colombian population, and are totally absent the analysis between polymorphism and susceptibility to diseases such as AIDS. The population genetic study of these MTHFR polymorphisms, evaluated the genotypes of the volunteer participants, analyzed allelic frequencies, selection in favor of heterozygotes, population structure, and possible linkage of the two polymorphisms, using DNA extraction and real time PCR genotyping. The study allowed to establish a possible process of natural selection that favors heterozygotes with respect to the 677C> T polymorphism; it is not very clear the result of the 1298A> C polymorphism of the MTHFR gene. There is a significant difference between allelic frequencies in patients with HIV compared with healthy ones, which is the start point towards studies that could demonstrate that the presence of some SNPs, by preventing viral replication of HIV, delays the progression of the disease.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Ciencias con Énfasis en Genética Humana
dc.publisherFacultad de medicina
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.sourceCrider KS, Bailey LB, Berry RJ. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84.
dc.sourceLucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–38.
dc.sourceBrito A, Hertrampf E, Olivares M, Gaitán D, Sánchez H, Allen LH, et al. Folate, vitamin B12 and human health. Rev Med Chil. 2012;140(11):1464–75.
dc.sourceGate D, Danielpour M, Levy R, Breunig JJ, Town T. Basic biology and mechanisms of neural ciliogenesis and the B9 family. Mol Neurobiol. 2012;45(3):564–70.
dc.sourceLlera Rodríguez L. Importancia del ácido fólico en la salud humana. Aliment Rev Tecnol e Hig los Aliment. 2003;(345):19–23.
dc.sourceStover PJ. One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr. 2009;139(12):2402–5.
dc.sourceBailey LB, Gregory JF. Recent Advances in Nutritional Science Folate Metabolism and. J Nutr. 1999;129:779–82.
dc.sourceRodríguez GP. Ácido Fólico y Vitamina B2 en la nutrición humana. Revista Aubana aliment Nutr. 1998;12(2):107–19.
dc.sourceObican SG, Finnell RH, Mills JL, Shaw GM, Scialli AR. Folic acid in early pregnancy: a public health success story. FASEB J. 2010;24(11):4167–74.
dc.sourceHarper. Bioquimica ilustrada. Igarss 2014. 2014;(1):1–5.
dc.sourceRosenberg IH. A history of the isolation and identification of folic acid (folate). Vol. 61, Annals of Nutrition and Metabolism. 2012. p. 231–5.
dc.sourceBastian H. Lucy Wills (1888-1964): the life and research of an adventurous independent woman. J R Coll Physicians Edinb. 2008;38(1):89–91.
dc.sourceGreen R, Miller JW. Folate deficiency beyond megaloblastic anemia: hyperhomocysteinemia and other manifestations of dysfunctional folate status. Semin Hematol. 1999;36(1):47–64.
dc.sourceMcNulty H, Pentieva K. Folate bioavailability. Proc Nutr Soc. 2004;63(4):529–36.
dc.sourceArenas BC. Interrelación entre vitamina B12 y ácido fólico. Avances. 2011; 8(25): 10–5.
dc.sourceSuh JR, Herbig AK, Stover PJ. New perspectives on folate catabolism. Annu Rev Nutr. 2001;21:255–82.
dc.sourceBlencowe H, Cousens S, Modell B, Lawn J. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol. 2010;39(SUPPL. 1).
dc.sourceDe M, Barboza P, María L, Solís U. Impacto de la fortificación de alimentos con ácido fólico en los defectos del tubo neural en Costa Rica. Rev Panam Salud Pública. 2011;30(1):1–6.
dc.sourceCorrea LMM, Sosa BEP, Cadavid AD, Mesa SLR, López LPM. Ingesta de hierro y folatos durante el embarazo y su relación con indicadores bioquímicos maternos. Iatreia. 2012;25(3):194–202.
dc.sourceFerrer RL, Lugo NT, Sánchez YT, Portilla CV. Fundamentos del ácido fólico en la prevención primaria farmacológica de defectos congénitos. Rev Cuba Med Gen Integr. 2005;21.
dc.sourceCalvo EB, Biglieri A. Impacto de la Fortificación con Ácido Fólico Sobre el Estado Nutricional en Mujeres y la Prevalencia de Defectos del Tubo Neural. Vol. 81, Revista chilena de pediatría. 2010.
dc.sourceRaymond E. Informe Programa de Fortificación de las Harinas. Departamento de salud Ambiental Instituto de Salud Pública de Chile. 2008.
dc.sourceOlivares Grohnert M, Cuestas Montañés E. La fortificación de las harinas y cereales con ácido fólico reduce la prevalencia de cardiopatías congénitas severas. Evidencias en pediatría. 2009;5(3).
dc.sourceWho/Fao. Guidelines on food fortification with micronutrients. UnscnOrg. 2006;341.
dc.sourceImbard A, Benoist J-F, Blom HJ. Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 2013;10(9):4352–89.
dc.sourcePalomino-Morales R, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Rodriguez L, Miranda-Filloy JA, Fernandez-Gutierrez B, et al. A1298C polymorphism in the MTHFR gene predisposes to cardiovascular risk in rheumatoid arthritis. Arthritis Res Ther. 2010;12(2):R71.
dc.sourceTrovato FM, Catalano D, Ragusa A, Martines GF, Pirri C, Buccheri MA, et al. Relationship of MTHFR gene polymorphisms with renal and cardiac disease. World J Nephrol. 2015;4(1):127–37.
dc.sourceKlai S, Fekih-Mrissa N, El Housaini S, Kaabechi N, Nsiri B, Rachdi R, et al. Association of MTHFR A1298C polymorphism (but not of MTHFR C677T) with elevated homocysteine levels and placental vasculopathies. Vol. 22, Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis. 2011. p. 374–8.
dc.sourceGilbody S, Lightfoot T, Sheldon T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health. 2007;61(7):631–7.
dc.sourceLazarou C, Kapsou M. The role of folic acid in prevention and treatment of depression: an overview of existing evidence and implications for practice. Complement Ther Clin Pract. 2010;16(3):161–6.
dc.sourceZhang C, Xie B, Fang Y, Cheng W, Du Y, Wang D, et al. Influence of maternal MTHFR A1298C polymorphism on the risk in offspring of schizophrenia. Brain Res. 2010;1320:130–4.
dc.sourceSingh K, Singh SK, Raman R. MTHFR A1298C polymorphism and idiopathic male infertility. J Postgrad Med. 2010;56(4):267–9.
dc.sourceOliveira KC De, Bianco B, Verreschi ITN, Guedes AD, Galera BB, Galera MF, et al. Prevalence of the polymorphism MTHFR A1298C and not MTHFR C677T is related to chromosomal aneuploidy in Brazilian Turner Syndrome patients. Arq Bras Endocrinol Metabol. 2008;52(8):1374–81.
dc.sourcePozzi E, Vergani P, Dalprà L, Combi R, Silvestri D, Crosti F, et al. Maternal polymorphisms for methyltetrahydrofolate reductase and methionine synthetase reductase and risk of children with Down syndrome. Am J Obstet Gynecol. 2009;200(6).
dc.sourceWu X, Wang X, Chan Y, Jia S, Luo Y, Tang W. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for down syndrome offspring: A meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2013;167(2):154–9.
dc.sourceErgul E, Sazci A, Utkan Z, Canturk NZ. Polymorphisms in the MTHFR gene are associated with breast cancer. Tumour Biol. 2015;24:286–90.
dc.sourceIzmirli M. A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk. Mol Biol Rep. 2013;40:625–37.
dc.sourceReddy JA, Clapp DW, Low PS. Retargeting of viral vectors to the folate receptor endocytic pathway. In: Journal of Controlled Release. 2001. p. 77–82.
dc.sourceRodríguez Toro E. Impacto de la deficiencia de micronutrientes en pacientes con VIH/sida. Asoc Colomb Infectología. 2007;11(2):78–86.
dc.sourceHoey L, McNulty H, Duffy ME, Hughes CF, Strain JJ. EURRECA-Estimating folate requirements for deriving dietary reference values. Crit Rev Food Sci Nutr. 2013; 53(10): 1041–50.
dc.sourceOhrvik VE, Witthoft CM. Human folate bioavailability. Nutrients. 2011;3(4):475–90.
dc.sourceSkipper HE, Mitchell JH, Bennett LL. Inhibition of Nucleic Acid Synthesis by Folic Acid Antagonists. Cancer Res. 1950;10(8):510–2.
dc.sourceRossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Vol. 3, Nutrients. 2011. p. 118–34.
dc.sourceSubramanian VS, Chatterjee N, Said HM. Folate uptake in the human intestine: Promoter activity and effect of folate deficiency. J Cell Physiol. 2003;196(2):403–8.
dc.sourceFowler B. The folate cycle and disease in humans. Vol. 78, Kidney international. Supplement. 2001. p. S221–9.
dc.sourceFox JT, Stover PJ. Folate-mediated one-carbon metabolism. Vitam Horm. 2008;79:1–44.
dc.sourceNijhout HF, Reed MC, Budu P, Ulrich CM. A mathematical model of the folate cycle: New insights into folate homeostasis. J Biol Chem. 2004;279(53):55008–16.
dc.sourceShane B. Folate chemistry and metabolism. Clin Res Regul Aff. 2001;18:137–59.
dc.sourceBailey LB, Gregory JF. Folate metabolism and requirements. J Nutr. 1999;129:779–82.
dc.sourceNazki FH, Sameer AS, Ganaie BA. Folate: Metabolism, genes, polymorphisms and the associated diseases. Vol. 533, Gene. 2014. p. 11–20.
dc.sourceThakur S, More D, Rahat B, Khanduja KL, Kaur J. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency. Mol Cell Biochem. 2016;411(1–2):151–60.
dc.sourceMason JB, Choi SW. Effects of alcohol on folate metabolism: Implications for carcinogenesis. In: Alcohol. 2005. p. 235–41.
dc.sourceHalsted CH, Villanueva JA, Devlin AM, Chandler CJ. Metabolic interactions of alcohol and folate. J Nutr [Internet]. 2002;132(8 Suppl):2367S–2372S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12163694
dc.sourceChen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486–9.
dc.sourceAntony AC. Folate Receptors. Annu Rev Nutr. 1996;16(1):501–21.
dc.sourceSabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Vol. 56, Advanced Drug Delivery Reviews. 2004. p. 1099–109.
dc.sourceKamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Vol. 56, Advanced Drug Delivery Reviews. 2004. p. 1085–97.
dc.sourceYates Z, Lucock M. Interaction between common folate polymorphisms and B-vitamin nutritional status modulates homocysteine and risk for a thrombotic event. Mol Genet Metab. 2003;79(3):201–13.
dc.sourceNazki FH, Sameer AS, Ganaie BA. Folate: Metabolism, genes, polymorphisms and the associated diseases. Vol. 533, Gene. 2014. p. 11–20.
dc.sourceDaubner SC, Matthews RG. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem. 1982;257(1):140–5.
dc.sourceGoyette P, Pai a, Milos R, Frosst P, Tran P, Chen Z, et al. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome. 1998;9(8):652–6.
dc.sourceTran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, et al. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome. 2002;13(9):483–92.
dc.sourceGoyette P, Sumner JS, Milos R, Duncan a M, Rosenblatt DS, Matthews RG, et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Vol. 7, Nature genetics. 1994. p. 195–200.
dc.sourceHomberger A, Linnebank M, Winter C, Willenbring H, Marquardt T, Harms E, et al. Genomic structure and transcript variants of the human methylenetetrahydrofolate reductase gene. Eur J Hum Genet. 2000;8(9):725–9.
dc.sourceRosenblatt DS. Methylenetetrahydrofolate reductase. Clin Invest Med. Canada; 2001 Feb;24(1):56–9.
dc.sourceToffoli G, De Mattia E. Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics. 2008;9:1195–206.
dc.sourceYafei W, Lijun P, Jinfeng W, Xiaoying Z. Is the prevalence of MTHFR C677T polymorphism associated with ultraviolet radiation in Eurasia? J Hum Genet. 2012;57(12):780–6.
dc.sourceGaughan DJ, Barbaux S, Kluijtmans LAJ, Whitehead AS. The human and mouse methylenetetrahydrofolate reductase (MTHFR) genes: Genomic organization, mRNA structure and linkage to the CLCN6 gene. Gene. 2000;257(2):279–89.
dc.sourceBerman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. The protein data bank. Acta Crystallogr Sect D Biol Crystallogr. 2002;58(6 I):899–907.
dc.sourceJacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, et al. Relation Between Folate Status, a Common Mutation in Methylenetetrahydrofolate Reductase, and Plasma Homocysteine Concentrations. Circulation. 1996;93(1):7–9.
dc.sourceTrabetti E. Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet. 2008;49(3):267–82.
dc.subjectMetilentetrahidrofolato reductasa (MTHFR)
dc.subjectCiclo del folato
dc.subjectSíntesis de ácidos nucleicos y folato
dc.subjectPolimorfismo
dc.subjectAsociación genética
dc.subjectVirus de la inmunodeficiencia humana
dc.subjectReplicación de VIH
dc.titleBúsqueda de selección en los Polimorfismos 1298a>C (C.1286a>C) (RS1801131) (P.E429A) y 677C>T (C.665C>T) (RS1801133) (P.A222V) del gen de la Metilentetrahidrofolato Reductasa (MTHFR) en una población colombiana
dc.typemasterThesis


Este ítem pertenece a la siguiente institución