dc.contributorFranco, Carlos
dc.creatorCastelblanco Vélez, Hugo
dc.date.accessioned2018-02-06T20:24:33Z
dc.date.available2018-02-06T20:24:33Z
dc.date.created2018-02-06T20:24:33Z
dc.date.issued2017
dc.identifierhttp://repository.urosario.edu.co/handle/10336/14292
dc.identifierhttps://doi.org/10.48713/10336_14292
dc.description.abstractThere is studied the development of theoretical-mathematical models as a big variety of strategies for the conduction and coordination of problems in the Administration of the Chain of Supply of the organizations, taking as reference the logistic problem known as the Inventory Routing Problem (IRP), with the target to look with its functioning integral solutions that add value to the provisioning of a product or the provision of a specific service not only to seek economic benefits but also thinking of reducing the adverse impact caused to the environment. Algorithmic approaches for solving both deterministic and stochastic problems are considered, a series of investigation models of both simple and compound operations based on heuristic and metaheuristic methods that seek to minimize objectives such as the use of fossil fuels and the emission of greenhouse gases, which are often subject to constraints given by real field studies in the inefficient management of resources needed for distribution, transportation, inventory and storage of goods and services. We work on a review of the state of the art of literature, classifying, grouping and analyzing information presented in scientific articles with the objective of structuring an article of bibliographic review based on an analysis and taxonomy that yields a series of interesting findings.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherAdministrador de negocios internacionales
dc.publisherFacultad de administración
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceAbdoli, B., MirHassani, S., & Hooshmand, F. (2017). Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions. Environmental Science And Pollution Research, 24(27), 21610-21624. doi:10.1007/s11356-017-9740-8
dc.sourceAfshar-Bakeshloo, M. )., Jolai, F. )., Mehrabi, A. )., Safari, H. )., & Maleki, M. ). (2016). A green vehicle routing problem with customer satisfaction criteria. Journal Of Industrial Engineering International, 12(4), 529-544. doi:10.1007/s40092-016-0163-9
dc.sourceAlinaghian, M. & Zamani, M. (2017). A bi-objective fleet size and mix green inventory routing problem, model and solution method. Soft Comput, 1–17. doi.org/10.1007/s00500-017-2866-2
dc.sourceAmeknassi, L., Aït-Kadi, D., & Rezg, N. (2016). Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model. International Journal Of Production Economics, 182165-184. doi:10.1016/j.ijpe.2016.08.031
dc.sourceArango-Serna, Martín Darío, Andrés-Romano, Carlos, & Zapata-Cortés, Julián Andrés. (2016). Distribución colaborativa de mercancías utilizando el modelo IRP. DYNA, 83(196), 204-212. https://dx.doi.org/10.15446/dyna.v83n196.52492
dc.sourceBaita, F., Ukovich, W., Pesenti, R., & Favaretto, D. (1998). Dynamic routing-and-inventory problems: a review. Transportation Research Part A: Policy and Practice, 32(8), 585–598. https://doi.org/10.1016/S0965-8564(98)00014-7
dc.sourceBandeira, J.M., Fontes, T., Pereira, S.R., Fernandes, P., Khattak, A. & Coelho, M.C. (2014). Assessing the Importance of Vehicle Type for the Implementation of Eco-routing Systems. Transportation Research Procedia, 9800-809. doi.org/10.1016/j.trpro.2014.10.063
dc.sourceBouma, H. W., & Teunter, R. H. (2016). The routed inventory pooling problem with multiple lateral transshipments. International Journal of Production Research, 54(12), 3523-3533. DOI: 10.1080/00207543.2015.1082668
dc.sourceBruglieri, M. )., Mancini, S. )., Pezzella, F. )., & Pisacane, O. ). (2016). A new Mathematical Programming Model for the Green Vehicle Routing Problem. Electronic Notes In Discrete Mathematics, 5589-92. doi:10.1016/j.endm.2016.10.023
dc.sourceCandia, R., (2017). Algoritmo de solución para un modelo dinámico combinado de IRP con ventanas de tiempo y crew sheduling. Universidad Distrital Fancisco José de Caldas. http://repository.udistrital.edu.co/bitstream/11349/5196/1/CandiaParraRubenDario2017.pdf
dc.sourceCheng, C., Qi, M., Wang, X., & Zhang, Y. (2016). Multi-period inventory routing problem under carbon emission regulations. International Journal Of Production Economics, 182263-275. doi:10.1016/j.ijpe.2016.09.001
dc.sourceCheng, C., Yang, P., Qi, M., & Rousseau, L. (2017). Modeling a green inventory routing problem with a heterogeneous fleet. Transportation Research Part E, 9797-112. doi:10.1016/j.tre.2016.11.001
dc.sourceCoelho, L. C., & Laporte, G. (2013). The exact solution of several classes of inventory-routing problems. Computers & Operations Research, 40(2), 558–565. https://doi.org/10.1016/j.cor.2012.08.012
dc.sourceDe, A., Kumar, S. K., Gunasekaran, A., & Tiwari, M. K. (2017). Sustainable maritime inventory routing problem with time window constraints. Engineering Applications Of Artificial Intelligence, 6177-95. doi:10.1016/j.engappai.2017.02.012
dc.sourceDelbufalo, E. (2012). Outcomes of inter‐organizational trust in supply chain relationships: a systematic literature review and a meta‐analysis of the empirical evidence. Supply Chain Management: An International Journal, 17(4), 377–402. https://doi.org/10.1108/13598541211246549
dc.sourceDemir, E., Bektaş, T., & Laporte, G. (2014). The bi-objective Pollution-Routing Problem. European Journal Of Operational Research, (3), 464.
dc.sourceDemir, E., Burgholzer, W., Hrušovský, M., Arıkan, E., Jammernegg, W., & Woensel, T. V. (2016). A green intermodal service network design problem with travel time uncertainty. Transportation Research Part B, 93(Part B), 789-807. doi:10.1016/j.trb.2015.09.007
dc.sourceEguia I., Racero J., Molina J.C., Guerrero F. (2013). Environmental Issues in Vehicle Routing Problems. In: Erechtchoukova M., Khaiter P., Golinska P. (eds) Sustainability Appraisal: Quantitative Methods and Mathematical Techniques for Environmental Performance Evaluation. EcoProduction (Environmental Issues in Logistics and Manufacturing). Springer, Berlin, Heidelberg, 215-241. doi.org/10.1007/978-3-642-32081-1_10
dc.sourceElhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D, 17370-379. doi:10.1016/j.trd.2012.02.002
dc.sourceFarahani, R. Z., Rashidi Bajgan, H., Fahimnia, B., & Kaviani, M. (2015). Location-inventory problem in supply chains: a modelling review. International Journal Of Production Research, 53(12), 3769-3788. doi:10.1080/00207543.2014.988889
dc.sourceFarrokhi-Asl, Hamed., Tavakkoli-Moghaddam, Reza., Asgarian, Bahare., Sangari, Esmat,. (2016). Metaheuristics for a bi-objective location-routing- problem in waste collection management. Journal of Industrial and Production Engineering, DO - 10.1080/21681015.2016.1253619
dc.sourceFichtinger, Johannes., Ries, Jörg M.., Grosse, Eric H. & Baker, Peter. (2014). Assessing the environmental impact of integrated inventory and warehouse management. International Journal of Production Economics, 170717-729. doi.org/10.1016/j.ijpe.2015.06.025
dc.sourceFukasawa, R., He, Q., & Song, Y. (2016). A disjunctive convex programming approach to the pollution-routing problem. Transportation Research Part B, 9461-79. doi:10.1016/j.trb.2016.09.006
dc.sourceGovindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal Of Production Economics, 152(Sustainable Food Supply Chain Management), 9-28. doi:10.1016/j.ijpe.2013.12.028
dc.sourceGuo, Z., Zhang, D., Liu, H., He, Z., & Shi, L. (2016). Green transportation scheduling with pickup time and transport mode selections using a novel multi-objective memetic optimization approach. Transportation Research Part D, doi:10.1016/j.trd.2016.02.003
dc.sourceHe Y., Briand C., Jozefowiez N. (2017). Inventory Routing with Explicit Energy Consumption: A Mass-Flow Formulation and First Experimentation. In: Vitoriano B., Parlier G. (eds) Operations Research and Enterprise Systems, 96-116. https://doi.org/10.1007/978-3-319-53982-9_6
dc.sourceHe, Dongdong., Zhong, Qiuyan., Qu, Yi., Du, Peng. & Lin, Zhengkui. (2016). A Green Approach for a Bi-Objective Programming Inventory Routing Problem. International Journal of Research and Surveys, 101375-1381
dc.sourceHuang, Y. A., Weber, C. L., & Matthews, H. S. (2009). Categorization of Scope 3 Emissions for Streamlined Enterprise Carbon Footprinting. Environmental Science & Technology, 43(22), 8509– 8515. https://doi.org/10.1021/es901643a
dc.sourceJabir, E., Panicker, V. V., & Sridharan, R. (2015). Multi-objective Optimization Model for a Green Vehicle Routing Problem. Procedia - Social And Behavioral Sciences, 189(Operations Management in Digital Economy), 33-39. doi:10.1016/j.sbspro.2015.03.189
dc.sourceKadziński, M., Tervonen, T., Tomczyk, M. K., & Dekker, R. (2017). Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega, 68168-184. doi:10.1016/j.omega.2016.07.003
dc.sourceKeskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C, 65111-127. doi:10.1016/j.trc.2016.01.013
dc.sourceKumar, R. S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L., & Tiwari, M. (2016). Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Computers & Industrial Engineering, 9929-40. doi:10.1016/j.cie.2015.07.003
dc.sourceKuo, T. C., Chen, G. Y., Wang, M. L., & Ho, M. W. (2014). Carbon footprint inventory route planning and selection of hot spot suppliers. International Journal Of Production Economics, 150125-139. doi:10.1016/j.ijpe.2013.12.005
dc.sourceLeggieri, V., & Haouari, M. (2017). A practical solution approach for the green vehicle routing problem. Transportation Research Part E, 10497-112. doi:10.1016/j.tre.2017.06.003
dc.sourceLetmathe, P., & Balakrishnan, N. (2005). Environmental considerations on the optimal product mix. European Journal Of Operational Research, 167(2), 398-412. doi:10.1016/j.ejor.2004.04.025
dc.sourceLi, H., Lv, T., & Li, Y. (2015). The tractor and semitrailer routing problem with many-to-many demand considering carbon dioxide emissions. Transportation Research Part D, 3468-82. doi:10.1016/j.trd.2014.10.004
dc.sourceMadankumar, S., & Rajendran, C. (2018). Mathematical models for green vehicle routing problems with pickup and delivery: A case of semiconductor supply chain. Computers And Operations Research, 89183-192. doi:10.1016/j.cor.2016.03.013
dc.sourceMallidis, I., Vlachos, D., Iakovou, E., & Dekker, R. (2014). Design and planning for green global supply chains under periodic review replenishment policies. Transportation Research Part E, 72210-235. doi:10.1016/j.tre.2014.10.008
dc.sourceMangla, S. K., Kumar, P., & Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study. Resources, Conservation & Recycling, 104(Part B), 375-390. doi:10.1016/j.resconrec.2015.01.001
dc.sourceMannoubia, A., Houda, D., & Bassem, J. (2017). Variable neighborhood search algorithm for the green vehicle routing problem. International Journal Of Industrial Engineering Computations, Vol 9, Iss 2, Pp 195-204 (2017), (2), 195. doi:10.5267/j.ijiec.2017.6.004
dc.sourceMirzaei, S., & Seifi, A. (2015). Considering lost sale in inventory routing problems for perishable goods. Computers & Industrial Engineering, 87213-227. doi:10.1016/j.cie.2015.05.010
dc.sourceMirzapour Al-e-hashem, S., & Rekik, Y. (2014). Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach. International Journal Of Production Economics, (C), 80.
dc.sourceMokhtari, H., & Hasani, A. (2017). A multi-objective model for cleaner production-transportation planning in manufacturing plants via fuzzy goal programming. Journal Of Manufacturing Systems, 44(Part 1), 230-242. doi:10.1016/j.jmsy.2017.06.002
dc.sourceMolina, J. C., Eguia, I., Racero, J., & Guerrero, F. (2014). Multi-objective Vehicle Routing Problem with Cost and Emission Functions. Procedia - Social And Behavioral Sciences, 160(XI Congreso de Ingenieria del Transporte (CIT 2014), 254-263. doi:10.1016/j.sbspro.2014.12.137
dc.sourceMolina, J. C., Equia, L., Racero, J., & Guerrero, F, (2014). Multi-objective vehicle routing problema with cost and emission. Procedia – Social and Behavioral Sciences, págs. 254-263.
dc.sourceMontoya-Torres, J. R., Gutierrez-Franco, E., & Blanco, E. E. (2015). Conceptual framework for measuring carbon footprint in supply chains. Production Planning & Control The Management of Operations, 26(4), 265–279. Retrieved from http://www.tandfonline.com/doi/full/10.1080/09537287.2014.894215?scroll=top&needAccess= true
dc.sourceMuñoz, A. D. (2007). Metaheurísticas. Librería – Editorial Dykinson.
dc.sourceMuñoz-Villamizar, A., Montoya-Torres, J. R., & Faulin, J. (2017). Impact of the use of electric vehicles in collaborative urban transport networks: A case study. Transportation Research Part D, 5040-54. doi:10.1016/j.trd.2016.10.018
dc.sourceNaderipour, M., & Alinaghian, M. (2016). Measurement, evaluation and minimization of CO2, NOx, and CO emissions in the open time dependent vehicle routing problem. Measurement: Journal Of The International Measurement Confederation, 90443-452. doi:10.1016/j.measurement.2016.04.043
dc.sourceNurjanni, K. P., Carvalho, M. S., & Costa, L. (2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. International Journal Of Production Economics, 183(Part B), 421-432. doi:10.1016/j.ijpe.2016.08.028
dc.sourceQiu, Y., Qiao, J., & Pardalos, P. M. (2017). A branch-and-price algorithm for production routing problems with carbon cap-and-trade. Omega, 6849-61. doi:10.1016/j.omega.2016.06.001
dc.sourceRahimi, M., Baboli, A., & Rekik, Y. (2016). Sustainable Inventory Routing Problem for Perishable Products by Considering Reverse Logistic. IFAC-PapersOnLine, 49949-954. doi.org/10.1016/j.ifacol.2016.07.898
dc.sourceRahimi, M., Baboli, A., & Rekik, Y. (2017). Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria. Transportation Research Part E, 10159-83. doi:10.1016/j.tre.2017.03.001
dc.sourceSánchez, J., (2009). Propuesta para la mejora de la programación de los recursos no homogéneos de la poscosecha con proceso tipo flow shop híbrido en la empresa CI Miraflores S.A. Pontificia Universidad Javeriana. http://www.javeriana.edu.co/biblos/tesis/ingenieria/Tesis245.pdf
dc.sourceSara, N., & Farimah Mokhatab, R. (2017). An Integrated Multi-Echelon Supply Chain Network Design Considering Stochastic Demand: A Genetic Algorithm Based Solution. Promet (Zagreb), Vol 29, Iss 4, Pp 391-400 (2017), (4), 391. doi:10.7307/ptt.v29i4.2193
dc.sourceShukla, Nagesh., Tiwari, M.K. & Ceglarek, Darek. (2013). Genetic-algorithms-based algorithm portfolio for inventory routing problem with stochastic demand. International Journal of Production Research, 118-137. doi.org/10.1080/00207543.2011.653010
dc.sourceSoysal, M., Bloemhof-Ruwaard, J. M., & Bektaş, T. (2015). The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. International Journal Of Production Economics, 164366-378. doi:10.1016/j.ijpe.2014.11.016
dc.sourceSoysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. (2015). Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. International Journal Of Production Economics, (C), 118.
dc.sourceSoysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. (2018). Modeling a green inventory routing problem for perishable products with horizontal collaboration. Computers And Operations Research, 89168-182. doi:10.1016/j.cor.2016.02.003
dc.sourceSrivatsa Srinivas, S., & Gajanand, M. S. (2017). Vehicle routing problem and driver behaviour: a review and framework for analysis. Transport Reviews, 37(5), 590-611. doi:10.1080/01441647.2016.1273276
dc.sourceSun, J. )., & Liu, H. ). (2015). Stochastic eco-routing in a signalized traffic network. Transportation Research Part C: Emerging Technologies, 5932-47. doi:10.1016/j.trc.2015.06.002
dc.sourceSzala, M. (2013). Synthesis of Carbon Fibers by Combustion Route Fullerenes, Nanotubes and Carbon Nanostructures, 21, 879-887. doi: 10.1080/1536383X.2012.684184
dc.sourceTiwari, A., & Chang, P. (2015). A block recombination approach to solve green vehicle routing problem. International Journal Of Production Economics, 164379-387. doi:10.1016/j.ijpe.2014.11.003
dc.sourceToptal, A., Özlü, H., & Konur, D. (2014). Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. International Journal Of Production Research, 52(1), 243-269. doi:10.1080/00207543.2013.836615
dc.sourceToro, E. M., Franco, J. F., Echeverri, M. G., & Guimarães, F. G. (2017). A multi-objective model for the green capacitated location-routing problem considering environmental impact. Computers & Industrial Engineering, 110114-125. doi:10.1016/j.cie.2017.05.013
dc.sourceTracy, B. (2015). El camino hacia la riqueza: Estrategias de éxito para el emprendedor. Harper Collins.
dc.sourceVaz Penna, Puca Huachi., Afsar, H. Murat., Prins, Christian. & Prodhon, Caroline. (2016). A Hybrid Iterative Local Search Algorithm for The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations. IFAC-PapersOnline, 49955-960. doi.org/10.1016/j.ifacol.2016.07.899
dc.sourceWy, J., & Kim, B. (2013). A hybrid metaheuristic approach for the rollon–rolloff vehicle routing problem. Computers And Operations Research, 401947-1952. doi:10.1016/j.cor.2013.03.006
dc.sourceXiao, Y., & Konak, A. (2016). The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transportation Research Part E, 88146-166. doi:10.1016/j.tre.2016.01.011
dc.sourceYang, J., & Sun, H. (2015). Battery swap station location-routing problem with capacitated electric vehicles. Computers And Operations Research, 55217-232. doi:10.1016/j.cor.2014.07.003
dc.sourceYavuz, M. (2017). An iterated beam search algorithm for the green vehicle routing problem. Networks, 69(3), 317-328. doi:10.1002/net.21737
dc.sourceYin, P., & Chuang, Y. (2016). Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking. Applied Mathematical Modelling, 409302-9315. doi:10.1016/j.apm.2016.06.013
dc.sourceZhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E, 89182-214. doi:10.1016/j.tre.2016.02.011
dc.sourceZhang, J., Zhao, Y., Xue, W., & Li, J. (2015). Vehicle routing problem with fuel consumption and carbon emission. International Journal Of Production Economics, 170(Part A), 234-242. doi:10.1016/j.ijpe.2015.09.031
dc.sourceZhang, S., Gajpal, Y., & Appadoo, S. (2017). A meta-heuristic for capacitated green vehicle routing problem. Annals Of Operations Research, 1-19. doi:10.1007/s10479-017-2567-3
dc.sourceZhou, Y., & Lee, G. M. (2017). A Lagrangian Relaxation-Based Solution Method for a Green Vehicle Routing Problem to Minimize Greenhouse Gas Emissions. Sustainability, 9(5), 17.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectMetaheurísticas
dc.subjectHeurísticas
dc.subjectProblema de Ruteo de Vehículos (VRP)
dc.subjectProblema de Ruteo de Vehículos con Inventario (IRP)
dc.subjectCadena de Suministros
dc.subjectProblemas de Optimización
dc.subjectInvestigación de Operaciones.
dc.titleDesarrollo de modelos teórico-matematicos para incluir factores ambientales en cadenas de suministro aplicadas al inventory routing problem
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución