dc.contributorRamírez-Vélez, Robinson
dc.creatorQuintero Gacharná, Andrea del Pilar
dc.date.accessioned2018-08-23T13:08:36Z
dc.date.available2018-08-23T13:08:36Z
dc.date.created2018-08-23T13:08:36Z
dc.date.issued2018
dc.identifierhttp://repository.urosario.edu.co/handle/10336/18343
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Actividad Física y Salud
dc.publisherFacultad de medicina
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsRestringido (Temporalmente bloqueado)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.sourceAlves, C. R. R., Tessaro, V. H., Teixeira, L. A. C., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of Acute High-Intensity Aerobic Interval Exercise Bout on Selective Attention and Short-Term Memory Tasks. Perceptual and Motor Skills, 118(1), 63–72. https://doi.org/10.2466/22.06.PMS.118k10w4
dc.sourceBarella, L. A., Etnier, J. L., & Chang, Y.-K. (2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. Journal of Aging and Physical Activity, 18(1), 87–98.
dc.sourceBarenberg, J., Berse, T., & Dutke, S. (2015). Ergometer cycling enhances executive control in task switching. Journal of Cognitive Psychology, 27(6), 692–703. https://doi.org/10.1080/20445911.2015.1024256
dc.sourceBatacan, R. B., Duncan, M. J., Dalbo, V. J., Tucker, P. S., & Fenning, A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. British Journal of Sports Medicine, 51(6), 494–503. https://doi.org/10.1136/bjsports-2015-095841
dc.sourceBischof, G. N., & Park, D. C. (2015). Obesity and Aging. Psychosomatic Medicine, 77(6), 697–709. https://doi.org/10.1097/PSY.0000000000000212
dc.sourceBorst, S. E., De Hoyos, D. V, Garzarella, L., Vincent, K., Pollock, B. H., Lowenthal, D. T., & Pollock, M. L. (2001). Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Medicine and Science in Sports and Exercise, 33(4), 648–53.
dc.sourceBoutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011. https://doi.org/10.1155/2011/868305
dc.sourceBrickenkamp, R. (2012). d2, test de atención (adapt. Nicolás Seisdedos Cubero). (Madird:TEA, Ed.).
dc.sourceBudde, H., Brunelli, A., Machado, S., Velasques, B., Ribeiro, P., Arias-Carrión, O., & Voelcker-Rehage, C. (2012). Intermittent Maximal Exercise Improves Attentional Performance Only in Physically Active Students. Archives of Medical Research, 43(2), 125–131. https://doi.org/10.1016/j.arcmed.2012.02.005
dc.sourceCarlota Rodríguez Barreto, L., Del Carmen Pulido, N., & Alejandro Pineda Roa, C. (2016). Propiedades psicométricas del Stroop, test de colores y palabras en población colombiana no patológica* Psychometric Properties of the Stroop color-word Test in non-pathological Colombian Population, 15(2), 255–272. https://doi.org/10.11144/Javeriana.upsy15-2.ppst
dc.sourceChang, Y.-K., Tsai, C.-L., Huang, C.-C., Wang, C.-C., & Chu, I.-H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport, 17(1), 51–55. https://doi.org/10.1016/j.jsams.2013.02.007
dc.sourceChang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
dc.sourceCoetsee, C., & Terblanche, E. (2017). The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. European Review of Aging and Physical Activity : Official Journal of the European Group for Research into Elderly and Physical Activity, 14(1), 13. https://doi.org/10.1186/s11556-017-0183-5
dc.sourceColcombe, S., & Kramer, A. F. (2003). Fitness Effects on the Cognitive Function of Older Adults. Psychological Science, 14(2), 125–130. https://doi.org/10.1111/1467-9280.t01-1-01430
dc.sourceCOSTIGAN, S. A., EATHER, N., PLOTNIKOFF, R. C., HILLMAN, C. H., & LUBANS, D. R. (2016). High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Medicine & Science in Sports & Exercise, 48(10), 1985–1993. https://doi.org/10.1249/MSS.0000000000000993
dc.sourceCurlik, D. M., Shors, T. J., & Shors, T. J. (2013). Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64(1), 506–14. https://doi.org/10.1016/j.neuropharm.2012.07.027
dc.sourceDavis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., … Naglieri, J. A. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1), 91–98. https://doi.org/10.1037/a0021766
dc.sourceDiamond, A. (2009). All or none hypothesis: a global-default mode that characterizes the brain and mind. Developmental Psychology, 45(1), 130–8. https://doi.org/10.1037/a0014025
dc.sourceDiamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
dc.sourceDrigny, J., Gremeaux, V., Dupuy, O., Gayda, M., Bherer, L., Juneau, M., & Nigam, A. (2014). Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: A pilot study. Journal of Rehabilitation Medicine, 46(10), 1050–1054. https://doi.org/10.2340/16501977-1905
dc.sourceDunsky, A., Abu-Rukun, M., Tsuk, S., Dwolatzky, T., Carasso, R., & Netz, Y. (2017). The effects of a resistance vs. an aerobic single session on attention and executive functioning in adults. PloS One, 12(4), e0176092. https://doi.org/10.1371/journal.pone.0176092
dc.sourceEtnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130. https://doi.org/10.1016/j.brainresrev.2006.01.002
dc.sourceGolden, C. J. (1994). STROOP. Test de Colores y Palabras (TEA ediciones).
dc.sourceGraf, S., Karsegard, V. L., Viatte, V., Maisonneuve, N., Pichard, C., & Genton, L. (2013). Comparison of three indirect calorimetry devices and three methods of gas collection: A prospective observational study. Clinical Nutrition, 32(6), 1067–1072. https://doi.org/10.1016/j.clnu.2013.08.012
dc.sourceGunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., & Gordon, E. (2006). Obesity is associated with memory deficits in young and middle-aged adults. Eating and Weight Disorders : EWD, 11(1), e15-9.
dc.sourceHill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating Cortisol levels: The intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587–591. https://doi.org/10.1007/BF03345606
dc.sourceHillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044–1054. https://doi.org/10.1016/j.neuroscience.2009.01.057
dc.sourceItoh, T., Imano, M., Nishida, S., Tsubaki, M., Hashimoto, S., Ito, A., & Satou, T. (2011). Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. Journal of Neural Transmission, 118(2), 193–202. https://doi.org/10.1007/s00702-010-0495-3
dc.sourceJoyce, J., Graydon, J., McMorris, T., & Davranche, K. (2009). The time course effect of moderate intensity exercise on response execution and response inhibition. Brain and Cognition, 71(1), 14–9. https://doi.org/10.1016/j.bandc.2009.03.004
dc.sourceKamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 64(3), 356–63. https://doi.org/10.1093/geronb/gbp030
dc.sourceKamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 65(2), 114–21. https://doi.org/10.1016/j.ijpsycho.2007.04.001
dc.sourceKeating, S. E., Johnson, N. A., Mielke, G. I., & Coombes, J. S. (2017). A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obesity Reviews, 18(8), 943–964. https://doi.org/10.1111/obr.12536
dc.sourceKim, T.-W., Choi, H.-H., & Chung, Y.-R. (2016). Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. Journal of Exercise Rehabilitation, 12(3), 156–62. https://doi.org/10.12965/jer.1632644.322
dc.sourceLabelle, V., Bosquet, L., Mekary, S., & Bherer, L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain and Cognition, 81(1), 10–7. https://doi.org/10.1016/j.bandc.2012.10.001
dc.sourceLambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091
dc.sourceLauer, M., Froelicher, E. S., Williams, M., Kligfield, P., & American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. (2005). Exercise Testing in Asymptomatic Adults: A Statement for Professionals From the American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation, 112(5), 771–776. https://doi.org/10.1161/CIRCULATIONAHA.105.166543
dc.sourceLiu-Ambrose, T., & Donaldson, M. G. (2009). Exercise and cognition in older adults: is there a role for resistance training programmes? British Journal of Sports Medicine, 43(1), 25–7. https://doi.org/10.1136/bjsm.2008.055616
dc.sourceLiu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010). Resistance training and executive functions: a 12-month randomized controlled trial. Archives of Internal Medicine, 170(2), 170–8. https://doi.org/10.1001/archinternmed.2009.494
dc.sourceLiu, H., Zhao, G., Cai, K., Zhao, H., & Shi, L. (2011). Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behavioural Brain Research, 218(2), 308–314. https://doi.org/10.1016/j.bbr.2010.12.030
dc.sourceLudyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611–1626. https://doi.org/10.1111/psyp.12736
dc.sourceMcMorris, T., Davranche, K., Jones, G., Hall, B., Corbett, J., & Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 73(3), 334–40. https://doi.org/10.1016/j.ijpsycho.2009.05.004
dc.sourceMcMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain and Cognition, 80(3), 338–51. https://doi.org/10.1016/j.bandc.2012.09.001
dc.sourceMiller, H. V., Barnes, J. C., & Beaver, K. M. (2011). Self-control and health outcomes in a nationally representative sample. American Journal of Health Behavior, 35(1), 15–27.
dc.sourceNguyen, J. C. D., Killcross, A. S., & Jenkins, T. A. (2014). Obesity and cognitive decline: role of inflammation and vascular changes. Frontiers in Neuroscience, 8, 375. https://doi.org/10.3389/fnins.2014.00375
dc.sourcePeruyero, F., Zapata, J., Pastor, D., & Cervelló, E. (2017). The Acute Effects of Exercise Intensity on Inhibitory Cognitive Control in Adolescents. Frontiers in Psychology, 8, 921. https://doi.org/10.3389/fpsyg.2017.00921
dc.sourcePhysical Activity Guidelines Advisory Committee report, 2008. To the Secretary of Health and Human Services. Part A: executive summary. (2009). Nutrition Reviews, 67(2), 114–120. https://doi.org/10.1111/j.1753-4887.2008.00136.x
dc.sourcePontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The Effect of Acute Aerobic and Resistance Exercise on Working Memory. Medicine & Science in Sports & Exercise, 41(4), 927–934. https://doi.org/10.1249/MSS.0b013e3181907d69
dc.sourceRamírez-Vélez, R., Hernandez, A., Castro, K., Tordecilla-Sanders, A., González-Ruíz, K., Correa-Bautista, J. E., … García-Hermoso, A. (2016). High Intensity Interval- vs Resistance or Combined- Training for Improving Cardiometabolic Health in Overweight Adults (Cardiometabolic HIIT-RT Study): study protocol for a randomised controlled trial. Trials, 17(1), 298. https://doi.org/10.1186/s13063-016-1422-1
dc.sourceSchmolesky, M. T., Webb, D. L., & Hansen, R. A. (2013). The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. Journal of Sports Science & Medicine, 12(3), 502–11.
dc.sourceTaylor Tavares, J. V, Clark, L., Cannon, D. M., Erickson, K., Drevets, W. C., & Sahakian, B. J. (2007). Distinct profiles of neurocognitive function in unmedicated unipolar depression and bipolar II depression. Biological Psychiatry, 62(8), 917–24. https://doi.org/10.1016/j.biopsych.2007.05.034
dc.sourceTSUKAMOTO, H., TAKENAKA, S., SUGA, T., TANAKA, D., TAKEUCHI, T., HAMAOKA, T., … HASHIMOTO, T. (2017). Effect of Exercise Intensity and Duration on Postexercise Executive Function. Medicine & Science in Sports & Exercise, 49(4), 774–784. https://doi.org/10.1249/MSS.0000000000001155
dc.sourceVan der Wardt, V., Hancox, J., Gondek, D., Logan, P., Nair, R. das, Pollock, K., & Harwood, R. (2017). Adherence support strategies for exercise interventions in people with mild cognitive impairment and dementia: A systematic review. Preventive Medicine Reports, 7, 38–45. https://doi.org/10.1016/j.pmedr.2017.05.007
dc.sourceVerburgh, L., Königs, M., Scherder, E. J. A., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British Journal of Sports Medicine, 48(12), 973–9. https://doi.org/10.1136/bjsports-2012-091441
dc.sourceVidoni, E. D., Johnson, D. K., Morris, J. K., Van Sciver, A., Greer, C. S., Billinger, S. A., … Burns, J. M. (2015). Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial. PloS One, 10(7), e0131647. https://doi.org/10.1371/journal.pone.0131647
dc.sourceWeng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential Effects of Acute Exercise on Distinct Aspects of Executive Function. Medicine & Science in Sports & Exercise, 47(7), 1460–1469. https://doi.org/10.1249/MSS.0000000000000542
dc.sourceWHO | Physical Activity and Adults. (2015). WHO. Retrieved from http://www.who.int/dietphysicalactivity/factsheet_adults/en/
dc.sourceWohlwend, M., Olsen, A., Håberg, A. K., & Palmer, H. S. (2017). Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults. Frontiers in Psychology, 8, 406. https://doi.org/10.3389/fpsyg.2017.00406
dc.sourceWoo, J., Shin, K., Park, S., Jang, K., & Kang, S. (2013). Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats. Lipids in Health and Disease, 12(1), 144. https://doi.org/10.1186/1476-511X-12-144
dc.subjectCognitive function
dc.subjectAttention capacity
dc.subjectInhibition
dc.subjectObesity
dc.subjectInactivity
dc.subjectPhysical exercise
dc.titleAcute effect of three different exercise training modalities on executive function in overweight inactive men : The BrainFit study
dc.typemasterThesis


Este ítem pertenece a la siguiente institución