dc.contributorEspinosa-Aranzeles, Angela-Fernanda
dc.contributorMartínez Del Valle, Anacaona
dc.creatorDe la Pava Cortes, Ivan Camilo
dc.date.accessioned2017-05-23T20:20:47Z
dc.date.available2017-05-23T20:20:47Z
dc.date.created2017-05-23T20:20:47Z
dc.date.issued2017
dc.identifierhttp://repository.urosario.edu.co/handle/10336/13424
dc.identifierhttps://doi.org/10.48713/10336_13424
dc.description.abstractIntroduction: Human gait is the highest point in a person’s functional independence; therefore, its importance as a movement pattern has led to the development of measuring tools. The aim of the present study is to assess the correspondence between two of those measuring tools: computerized gait analysis (CGA) and the physical examination (PE) only in patients with augmented femoral anteversión (AFA) without neurological alterations. Material and methods: This is an observational analytic study of correspondence and data was obtained retrospectively from 2010 to 2014 in the gait analysis lab from the Children Orthopedics Institute Roosevelt (IOIR) through a single application of the CGA and the PE. Results: It was observed that there are evident alterations in the PE because at hip level the internal-external rotation range decreases in the stance and swing phases. Also, in the knee there is a decrease in the flexion-extension range during the swing phase and in the ankle there is also a decrease in the dorsiflexion-plantarflexion range in the stance and swing phases. Conclusion: This study found that there is no correspondence between the PE and CGA, therefore they are complementary and contribute with information for a differential approach in the decision making at a clinical level.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Epidemiología
dc.publisherFacultad de medicina
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceChris Souder. Orthobullets [Internet]. 2015 [cited 2015 Mar 22]. Available from: http://www.orthobullets.com/pediatrics/4059/femoral-anteversion
dc.sourceWren T a L, Rethlefsen S, Kay RM. Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. J Pediatr Orthop. 2005;25(1):79–83.
dc.sourceBruderer-Hofstetter M, Fenner V, Payne E, Zdenek K, Klima H, Wegener R. Gait deviations and compensations in pediatric patients with increased femoral torsion. J Orthop Res. 2015;33(2):155–62.
dc.sourceAkalan NE, Temelli Y, Kuchimov S. Discrimination of abnormal gait parameters due to increased femoral anteversion from other effects in cerebral palsy. Hip Int. Italy; 2013;23(5):492–9.
dc.sourceSun D-M, Pan S-N, Wang E-B, Zheng L-Q, Guo W-L, Fu X-H. Magnetic Resonance Three-dimensional Cube Technique in the Measurement of Piglet Femoral Anteversion. Chin Med J (Engl) [Internet]. 2016;129(13):1584. Available from: http://www.cmj.org/text.asp?2016/129/13/1584/184462
dc.sourceWhittle MW. Clinical gait analysis: A review. Hum Mov Sci. 1996;15(3):369–87.
dc.sourceWahid F, Begg R, McClelland JA, Webster KE, Halgamuge S, Ackland DC. A multiple regression normalization approach to evaluation of gait in total knee arthroplasty patients. Clin Biomech. Elsevier Ltd; 2016;32:92–101.
dc.sourceSangeux M, Mahy J, Graham HK. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other? Gait Posture [Internet]. Elsevier B.V.; 2014;39(1):12–6. Available from: http://dx.doi.org/10.1016/j.gaitpost.2013.05.020
dc.sourceBenedetti MG, Catani F, Leardini A, Pignotti E, Giannini S. Data management in gait analysis for clinical applications. Clin Biomech. 1998;13(3):204–15.
dc.sourceMolloy M, McDowell BC, Kerr C, Cosgrove AP. Further evidence of validity of the Gait Deviation Index. Gait Posture [Internet]. Elsevier B.V.; 2010;31(4):479–82. Available from: http://dx.doi.org/10.1016/j.gaitpost.2010.01.025
dc.sourceSerrano Sánchez RF. Desarrollo Angular y Rotacional de los Miembros Inferiores en Escolares entre 3 y 10 años. 2011;60(3):1–30.
dc.sourceBruce WD, Stevens PM. Surgical correction of miserable malalignment syndrome. J Pediatr Orthop. 2004;24(4):392–6.
dc.sourceCelestre PC, Bowen RE. Pediatric Orthopaedics Correction of angular deformities in children. Curr Orthop Pract. 2009;20(6):641–7.
dc.sourceFriend L, Widmann RF. Advances in management of limb length discrepancy and lower limb deformity. Curr Opin Pediatr [Internet]. 2008;20(1):46–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18197038%5Cnhttp://graphics.tx.ovid.com/ovftpdfs/FPDDNCOBDFMMOG00/fs046/ovft/live/gv023/00008480/00008480-200802000-00008.pdf
dc.sourceSielatycki JA, Hennrikus WL, Swenson RD, Fanelli MG, Reighard CJ, Hamp JA. In-Toeing Is Often a Primary Care Orthopedic Condition. J Pediatr [Internet]. Elsevier Inc.; 2016;1–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022347616303821
dc.sourceSequeiros L. Raíces de la humanidad:¿ evolución o creación? Vol. 19. Editorial SAL TERRAE; 1992.
dc.sourceHarari YN. Sapiens: A brief history of humankind. Random House; 2014.
dc.sourceViel E. La marcha humana, la carrera y el salto: Biomecánica, exploraciones, normas y alteraciones. Paris: MASSON; 2002.
dc.sourceBaker R. The history of gait analysis before the advent of modern computers. Gait Posture. 2007;26(3):331–42.
dc.sourceRathinam C, Bateman A, Peirson J, Skinner J. Observational gait assessment tools in paediatrics - A systematic review. Gait Posture [Internet]. Elsevier B.V.; 2014;40(2):279–85. Available from: http://dx.doi.org/10.1016/j.gaitpost.2014.04.187
dc.sourceMartin K, Hoover D, Wagoner E, Wingler T, Evans T, O’Brien J, et al. Development and reliability of an observational gait analysis tool for children with Down syndrome. Pediatr Phys Ther [Internet]. 2009;21(3):261–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19680068
dc.sourceGrunt S, van Kampen PJ, van der Krogt MM, Brehm MA, Doorenbosch CAM, Becher JG. Reproducibility and validity of video screen measurements of gait in children with spastic cerebral palsy. Gait Posture [Internet]. Elsevier B.V.; 2010;31(4):489–94. Available from: http://dx.doi.org/10.1016/j.gaitpost.2010.02.006
dc.sourceMcMorran D, Robinson LW, Henderson G, Herman J, Robb JE, Gaston MS. Using a goal attainment scale in the evaluation of outcomes in patients with diplegic cerebral palsy. Gait Posture [Internet]. Elsevier B.V.; 2016;44:168–71. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636215009716
dc.sourceStark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM R [Internet]. Elsevier Inc.; 2011;3(5):472–9. Available from: http://dx.doi.org/10.1016/j.pmrj.2010.10.025
dc.sourceSchwartz S, Cohen ME, Herbison GJ, Shah A. Relationship between two measures of upper extremity strength: manual muscle test compared to hand-held myometry. Arch Phys Med Rehabil. UNITED STATES; 1992 Nov;73(11):1063–8.
dc.sourceJones, Stratton G. Muscle function assessment in children. Acta Paediatr. 2000;89(5):753–61.
dc.sourceWren T a L, Gorton GE, Õunpuu S, Tucker C a. Efficacy of clinical gait analysis: A systematic review. Gait Posture. 2011;34(2):149–53.
dc.sourceRoberts A, Stewart C, Freeman R. Gait analysis to guide a selective dorsal rhizotomy program. Gait Posture [Internet]. Elsevier B.V.; 2015;42(1):16–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636215004452
dc.sourceVerschuren O, Ketelaar M, Takken T, Van Brussel M, Helders PJM, Gorter JW. Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with Cerebral Palsy. Disabil Rehabil [Internet]. 2008;30(18):1358–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18850351
dc.sourceAertssen WFM, Ferguson GD, Smits-Engelsman BCM. Reliability and Structural and Construct Validity of the Functional Strength Measurement in Children Aged 4 to 10 Years. Phys Ther [Internet]. 2015; Available from: http://ptjournal.apta.org/content/early/2016/02/03/ptj.20140018.abstract
dc.sourceAgudelo AI, Briñez TJ, Guarín V, Ruiz JP. Marcha: descripción, métodos, herramientas de evaluación y parámetros de normalidad reportados en la literatura. CES Mov y Salud [Internet]. 2013;1(1):29–43. Available from: http://revistas.ces.edu.co/index.php/movimientoysalud/article/view/2481
dc.sourceHerring JA, Tachdjian MO, for Children TSRH. Tachdjian’s Pediatric Orthopaedics [Internet]. Saunders/Elsevier; 2008. (Tachdjian’s Pediatric Orthopaedics). Available from: https://books.google.com.co/books?id=734j2MHL9qEC
dc.sourceRose J, Gamble JG, Medeiros J, Burgos A, Haskell WL. Energy cost of walking in normal children and in those with cerebral palsy: Comparison of Heart Rate and Oxygen Uptake. Vol. 9, Journal of Pediatric Orthopaedics. 1989. p. 276–9.
dc.sourceWaters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture. 1999;9(3):207–31.
dc.sourceOpheim A, Jahnsen R, Olsson E, Stanghelle JK. Walking function, pain, and fatigue in adults with cerebral palsy: A 7-year follow-up study. Dev Med Child Neurol. 2009;51(5):381–8.
dc.sourceCarter DR, Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res. 1988;6(6):804–16.
dc.sourceWong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: A research perspective. Bone. 2003;33(1):1–13.
dc.sourceEckstein F, Faber S, Mühlbauer R, Hohe J, Englmeier KH, Reiser M, et al. Functional adaptation of human joints to mechanical stimuli. Osteoarthr Cartil. 2002;10(1):44–50.
dc.sourceKerr Graham H, Selber P. Musculoskeletal aspects of cerebral palsy. J Bone Jt Surg [Internet]. 2003;85(2):157–66. Available from: http://www.bjj.boneandjoint.org.uk/cgi/doi/10.1302/0301-620X.85B2.14066
dc.sourceDhaher YY, Kahn LE. The effect of vastus medialis forces on patello-femoral contact: a model-based study. J Biomech Eng [Internet]. 2002;124(6):758–67. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12596645
dc.sourceRadler C, Kranzl A, Manner HM, Höglinger M, Ganger R, Grill F. Torsional profile versus gait analysis: Consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture. 2010;32:405–10.
dc.sourceSteele KM, DeMers MS, Schwartz MH, Delp SL. Compressive tibiofemoral force during crouch gait. Gait Posture [Internet]. Elsevier B.V.; 2012;35(4):556–60. Available from: http://dx.doi.org/10.1016/j.gaitpost.2011.11.023
dc.sourceLiu MQ, Anderson FC, Schwartz MH, Delp SL. Muscle contributions to support and progression over a range of walking speeds. J Biomech. 2008;41(15):3243–52.
dc.sourcePerry J, Antonelli D, Ford W. Analysis of knee-joint forces during flexed-knee stance. J Bone Joint Surg Am [Internet]. The American Orthopedic Association; 1975 Oct 1 [cited 2016 Apr 25];57(7):961–7. Available from: http://jbjs.org/content/57/7/961.abstract
dc.sourceD’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty. 2006;21(2):255–62.
dc.sourceKutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech [Internet]. Elsevier; 2010;43(11):2164–73. Available from: http://dx.doi.org/10.1016/j.jbiomech.2010.03.046
dc.sourceMundermann A, Dyrby CO, D’Lima DD, Colwell CW, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26(9):1167–72.
dc.sourceShelburne KB, Torry MR, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc. 2005;37(11):1948–56.
dc.sourceSteele KM, Seth A, Hicks JL, Schwartz MS, Delp SL. Muscle contributions to support and progression during single-limb stance in crouch gait. J Biomech [Internet]. Elsevier; 2010;43(11):2099–105. Available from: http://dx.doi.org/10.1016/j.jbiomech.2010.04.003
dc.sourceTurner DE, Helliwell PS, Burton AK, Woodburn J. The relationship between passive range of motion and range of motion during gait and plantar pressure measurements. Diabet Med. 2007;24(11):1240–6.
dc.sourceDomagalska M, Szopa A, Syczewska M, Pietraszek S, Kido?? Z, Onik G. The relationship between clinical measurements and gait analysis data in children with cerebral palsy. Gait Posture. 2013;38(4):1038–43.
dc.sourceKang M-H, Oh J-S. Relationship Between Weightbearing Ankle Dorsiflexion Passive Range of Motion and Ankle Kinematics During Gait. J Am Podiatr Med Assoc [Internet]. 2017;107(1):39–45. Available from: http://www.japmaonline.org/doi/10.7547/14-112
dc.sourceMaas JC, Huijing PA, Dallmeijer AJ, Harlaar J, Jaspers RT, Becher JG. Decrease in ankle-foot dorsiflexion range of motion is related to increased knee flexion during gait in children with spastic cerebral palsy. J Electromyogr Kinesiol. Elsevier Ltd; 2015;25(2):339–46.
dc.sourceCordier W, Katthagen B-D. Femoral torsional deformities. Orthopade [Internet]. 2000;29(9):795–801. Available from: http://dx.doi.org/10.1007/s001320050528
dc.sourceBTS. BTS Bioengineering “true technology for true life” [Internet]. [cited 2016 Oct 19]. Available from: http://www.btsbioengineering.com
dc.sourceTaboadela CH. Goniometria una herramienta para la evaluacion de las incapacidades [Internet]. 1a ed. Medicine. Buenos Aires: Asociart ART; 2007. 1-130 p. Available from: http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract
dc.sourceSiegel S, Castellan NJ. Estadística no paramétrica aplicada a las ciencias de la conducta [Internet]. Trillas; 1995. (Biblioteca técnica de psicología). Available from: https://books.google.com.co/books?id=af88AAAACAAJ
dc.sourceDaniel WW. Bioestadistica: Base para el analisis de las ciencias de la salud [Internet]. Editorial Limusa S.A. De C.V.; 2002. Available from: https://books.google.com.co/books?id=hT2YPQAACAAJ
dc.sourceJacquemier M, Glard Y, Pomero V, Viehweger E, Jouve JL, Bollini G. Rotational profile of the lower limb in 1319 healthy children. Gait Posture. 2008;28(2):187–93.
dc.sourceArnold a S, Komattu a V, Delp SL. Internal rotation gait: a compensatory mechanism to restore abduction capacity decreased by bone deformity. Dev Med Child Neurol. 1997;39:40–4.
dc.sourceMcGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29(3):360–9.
dc.sourceNawoczenski DA, Baumhauer JF, Umberger BR. Relationship between clinical measurements and motion of the first metatarsophalangeal joint during gait. Vol. 81, The Journal of bone and joint surgery. American volume. 1999. p. 370–6.
dc.sourceArdestani MM, Moazen M, Jin Z. Sensitivity analysis of human lower extremity joint moments due to changes in joint kinematics. Med Eng Phys [Internet]. Elsevier Ltd.; 2015;37(2):165–74. Available from: http://dx.doi.org/10.1016/j.medengphy.2014.11.012
dc.sourceShong N. Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data. Grad Sch Public Heal. 2010;1–53.
dc.sourceCorrea J, Ávila C, López G. Análisis computarizado de la marcha de amputados transfemoral unilateral con prótesis endoesquelética y exoesquelética. Rev Cienc Salud … [Internet]. 2003;1(2):135–50. Available from: http://www.scielo.org.co/scielo.php?pid=S1692-72732003000200003&script=sci_arttext
dc.sourceNational Center for Biotechnology Information. MeSH [Internet]. 2008 [cited 2015 Mar 20]. Available from: http://www.ncbi.nlm.nih.gov/mesh
dc.sourceBiblioteca Virtual en Salud. Descriptores en Ciencias de la Salud [Internet]. 2016. Available from: http://decs.bvs.br/E/homepagee.htm
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectMarcha
dc.subjectExamen físico
dc.subjectAnteversión ósea
dc.subjectAnomalía Torsional
dc.subjectFémur
dc.subjectReproducibilidad de resultados.
dc.titleConcordancia entre el análisis computarizado de la marcha y el examen físico en pacientes con anteversión femoral aumentada sin alteraciones neurológicas.
dc.typemasterThesis


Este ítem pertenece a la siguiente institución