dc.creatorVizcaíno, Carolina
dc.creatorRestrepo-Montoya, Daniel
dc.creatorRodríguez Burbano, Diana Consuelo
dc.creatorNiño, Luis F.
dc.creatorOcampo, Marisol
dc.creatorVanegas, Magnolia
dc.creatorReguero, María T.
dc.creatorMartínez, Nora L.
dc.creatorPatarroyo, Manuel E.
dc.creatorPatarroyo, Manuel A.
dc.date.accessioned2018-11-29T15:13:09Z
dc.date.available2018-11-29T15:13:09Z
dc.date.created2018-11-29T15:13:09Z
dc.date.issued2010
dc.identifierISSN 1553-734X
dc.identifierhttp://repository.urosario.edu.co/handle/10336/18754
dc.identifierhttps://doi.org/10.1371/journal.pcbi.1000824
dc.description.abstractThe mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates. © 2010 Vizcaíno et al.
dc.languageeng
dc.relationPLoS Computational Biology, ISSN: 1553-734X, Vol. 6/No. 6 (2010) pp. 1-14
dc.relationhttps://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000824&type=printable
dc.relation14
dc.relationNo. 6
dc.relation1
dc.relationPLoS Computational Biology
dc.relationVol. 6
dc.rights
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source(2009) Global Tuberculosis Control: Surveillance, Planning, Financing, , WHO, World Health Organization. Genova: WHO, World Health Organization
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectProteína bacteriana
dc.subjectBacteriana
dc.subjectLinfocito B
dc.subjectGel de poliacrilamida
dc.subjectProteína de citoplasma
dc.subjectProteína de membrana
dc.subjectVacuna peptídica
dc.subjectProteína Rv178
dc.subjectProteína Rv361
dc.subjectProteína Rv43C
dc.subjectProteína Rv835
dc.subjectProteína Rv122
dc.subjectProteína Rv36
dc.subjectMedicamento no clasificado
dc.subjectAnticuerpo bacteriano
dc.subjectEpítopo
dc.subjectProteína de membrana externa
dc.subjectPéptido
dc.subjectExperimento con animales
dc.subjectGenoma bacteriano
dc.subjectCepa bacteriana
dc.subjectFraccionamiento Celular
dc.subjectPredicción por computadora
dc.subjectEstudio controlado
dc.subjectCitoplasma
dc.subjectIdentificación de drogas
dc.subjectAprendizaje automático
dc.subjectComputación Matemática
dc.subjectEstructura de la membrana
dc.subjectTuberculosis micobacteriana
dc.subjectLocalización de proteínas
dc.subjectSecreción de proteínas
dc.subjectProducción de vacunas
dc.subjectInteligencia artificial
dc.subjectEscherichia Coli
dc.subjectinmunotransferencia
dc.subjectMicroscopía inmunoelectrónica
dc.subjectInmunología
dc.subjectMetabolismo
dc.subjectMetodología
dc.subjectMycobacterium Smegmatis
dc.subjectElectroforesis en gel de poliacrilamida
dc.subjectModelo estadístico
dc.subjectUltrasonido
dc.subjectTuberculosis micobacteriana
dc.subjectAnticuerpos
dc.subjectInteligencia artificial
dc.subjectProteínas de la membrana externa bacteriana
dc.subjectFraccionamiento Celular
dc.subjectBiología Computacional
dc.subjectElectroforesis
dc.subjectEpítopos
dc.subjectFracciones subcelulares
dc.titleComputational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv
dc.typearticle


Este ítem pertenece a la siguiente institución