Artículos de revistas
Clustering for metric graphs using the p-Laplacian
Fecha
2016-08Registro en:
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Clustering for metric graphs using the p-Laplacian; Michigan Mathematical Journal; Michigan Mathematical Journal; 65; 3; 8-2016; 451-472
0026-2285
CONICET Digital
CONICET
Autor
del Pezzo, Leandro Martin
Rossi, Julio Daniel
Resumen
We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+.