dc.creatordel Pezzo, Leandro Martin
dc.creatorRossi, Julio Daniel
dc.date.accessioned2018-09-17T17:15:28Z
dc.date.accessioned2018-11-06T16:02:04Z
dc.date.available2018-09-17T17:15:28Z
dc.date.available2018-11-06T16:02:04Z
dc.date.created2018-09-17T17:15:28Z
dc.date.issued2016-08
dc.identifierdel Pezzo, Leandro Martin; Rossi, Julio Daniel; Clustering for metric graphs using the p-Laplacian; Michigan Mathematical Journal; Michigan Mathematical Journal; 65; 3; 8-2016; 451-472
dc.identifier0026-2285
dc.identifierhttp://hdl.handle.net/11336/59883
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1903746
dc.description.abstractWe deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+.
dc.languageeng
dc.publisherMichigan Mathematical Journal
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1307/mmj/1472066142
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.mmj/1472066142
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectP-LAPLACIAN
dc.subjectQUANTUM GRAPH
dc.subjectCLUSTERING PROBLEM
dc.titleClustering for metric graphs using the p-Laplacian
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución