dc.creator | del Pezzo, Leandro Martin | |
dc.creator | Rossi, Julio Daniel | |
dc.date.accessioned | 2018-09-17T17:15:28Z | |
dc.date.accessioned | 2018-11-06T16:02:04Z | |
dc.date.available | 2018-09-17T17:15:28Z | |
dc.date.available | 2018-11-06T16:02:04Z | |
dc.date.created | 2018-09-17T17:15:28Z | |
dc.date.issued | 2016-08 | |
dc.identifier | del Pezzo, Leandro Martin; Rossi, Julio Daniel; Clustering for metric graphs using the p-Laplacian; Michigan Mathematical Journal; Michigan Mathematical Journal; 65; 3; 8-2016; 451-472 | |
dc.identifier | 0026-2285 | |
dc.identifier | http://hdl.handle.net/11336/59883 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1903746 | |
dc.description.abstract | We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. | |
dc.language | eng | |
dc.publisher | Michigan Mathematical Journal | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1307/mmj/1472066142 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.mmj/1472066142 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | P-LAPLACIAN | |
dc.subject | QUANTUM GRAPH | |
dc.subject | CLUSTERING PROBLEM | |
dc.title | Clustering for metric graphs using the p-Laplacian | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |