Artículos de revistas
Matrix-Valued Gegenbauer-Type polynomials
Date
2017-12Registration in:
Koelink, Erik; de los Ríos, Ana M.; Román, Pablo Manuel; Matrix-Valued Gegenbauer-Type polynomials; Springer; Constructive Approximation; 46; 3; 12-2017; 459-487
0176-4276
1432-0940
CONICET Digital
CONICET
Author
Koelink, Erik
de los Ríos, Ana M.
Román, Pablo Manuel
Abstract
We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν> 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν+ 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν= 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.