dc.creatorKoelink, Erik
dc.creatorde los Ríos, Ana M.
dc.creatorRomán, Pablo Manuel
dc.date.accessioned2018-09-19T17:56:26Z
dc.date.accessioned2018-11-06T15:47:06Z
dc.date.available2018-09-19T17:56:26Z
dc.date.available2018-11-06T15:47:06Z
dc.date.created2018-09-19T17:56:26Z
dc.date.issued2017-12
dc.identifierKoelink, Erik; de los Ríos, Ana M.; Román, Pablo Manuel; Matrix-Valued Gegenbauer-Type polynomials; Springer; Constructive Approximation; 46; 3; 12-2017; 459-487
dc.identifier0176-4276
dc.identifierhttp://hdl.handle.net/11336/60249
dc.identifier1432-0940
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1901006
dc.description.abstractWe introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν> 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν+ 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν= 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00365-017-9384-4
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00365-017-9384-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDARBOUX FACTORIZATION
dc.subjectGEGENBAUER POLYNOMIALS
dc.subjectMATRIX-VALUED DIFFERENTIAL OPERATORS
dc.subjectMATRIX-VALUED ORTHOGONAL POLYNOMIALS
dc.subjectSHIFT OPERATOR
dc.titleMatrix-Valued Gegenbauer-Type polynomials
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución