dc.creator | Koelink, Erik | |
dc.creator | de los Ríos, Ana M. | |
dc.creator | Román, Pablo Manuel | |
dc.date.accessioned | 2018-09-19T17:56:26Z | |
dc.date.accessioned | 2018-11-06T15:47:06Z | |
dc.date.available | 2018-09-19T17:56:26Z | |
dc.date.available | 2018-11-06T15:47:06Z | |
dc.date.created | 2018-09-19T17:56:26Z | |
dc.date.issued | 2017-12 | |
dc.identifier | Koelink, Erik; de los Ríos, Ana M.; Román, Pablo Manuel; Matrix-Valued Gegenbauer-Type polynomials; Springer; Constructive Approximation; 46; 3; 12-2017; 459-487 | |
dc.identifier | 0176-4276 | |
dc.identifier | http://hdl.handle.net/11336/60249 | |
dc.identifier | 1432-0940 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1901006 | |
dc.description.abstract | We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν> 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν+ 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν= 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00365-017-9384-4 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00365-017-9384-4 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | DARBOUX FACTORIZATION | |
dc.subject | GEGENBAUER POLYNOMIALS | |
dc.subject | MATRIX-VALUED DIFFERENTIAL OPERATORS | |
dc.subject | MATRIX-VALUED ORTHOGONAL POLYNOMIALS | |
dc.subject | SHIFT OPERATOR | |
dc.title | Matrix-Valued Gegenbauer-Type polynomials | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |