Artículos de revistas
K-theory of cones of smooth varieties
Fecha
2013-02Registro en:
Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-34
1056-3911
Autor
Cortiñas, Guillermo Horacio
Haesemeyer, Christian
Walker, Mark E.
Weibel, Charles A.
Resumen
Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety.