dc.creatorCortiñas, Guillermo Horacio
dc.creatorHaesemeyer, Christian
dc.creatorWalker, Mark E.
dc.creatorWeibel, Charles A.
dc.date.accessioned2017-04-05T18:21:14Z
dc.date.accessioned2018-11-06T15:34:28Z
dc.date.available2017-04-05T18:21:14Z
dc.date.available2018-11-06T15:34:28Z
dc.date.created2017-04-05T18:21:14Z
dc.date.issued2013-02
dc.identifierCortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-34
dc.identifier1056-3911
dc.identifierhttp://hdl.handle.net/11336/14841
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1898660
dc.description.abstractLet R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety.
dc.languageeng
dc.publisherUniv Press Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/jag/2013-22-01/S1056-3911-2011-00583-3/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S1056-3911-2011-00583-3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAlgebraic K-theory
dc.subjectAffine cone
dc.subjectCohomology of differential forms
dc.subjectCyclic homology
dc.titleK-theory of cones of smooth varieties
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución