dc.creator | Cortiñas, Guillermo Horacio | |
dc.creator | Haesemeyer, Christian | |
dc.creator | Walker, Mark E. | |
dc.creator | Weibel, Charles A. | |
dc.date.accessioned | 2017-04-05T18:21:14Z | |
dc.date.accessioned | 2018-11-06T15:34:28Z | |
dc.date.available | 2017-04-05T18:21:14Z | |
dc.date.available | 2018-11-06T15:34:28Z | |
dc.date.created | 2017-04-05T18:21:14Z | |
dc.date.issued | 2013-02 | |
dc.identifier | Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-34 | |
dc.identifier | 1056-3911 | |
dc.identifier | http://hdl.handle.net/11336/14841 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1898660 | |
dc.description.abstract | Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety. | |
dc.language | eng | |
dc.publisher | Univ Press Inc | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/jag/2013-22-01/S1056-3911-2011-00583-3/ | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S1056-3911-2011-00583-3 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Algebraic K-theory | |
dc.subject | Affine cone | |
dc.subject | Cohomology of differential forms | |
dc.subject | Cyclic homology | |
dc.title | K-theory of cones of smooth varieties | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |