Artículos de revistas
Electrical and spectroscopic analysis in nanostructured SnO2: "long-term" resistance drift is due to in-diffusion
Fecha
2011-11-07Registro en:
Malagù, Cesare; Giberti, Alessio; Morandi, Sara; Aldao, Celso Manuel; Electrical and spectroscopic analysis in nanostructured SnO2: "long-term" resistance drift is due to in-diffusion; American Institute Of Physics; Journal Of Applied Physics; 110; 9; 7-11-2011; 519-527
0021-8979
Autor
Malagù, Cesare
Giberti, Alessio
Morandi, Sara
Aldao, Celso Manuel
Resumen
A model for conductance in n-type non-degenerate semiconductors is proposed and applied to polycrystalline SnO2 used as a gas sensor. Particular attention is devoted to the fundamental mechanism of Schottky barrier formation due to surface states in nanostructured grains. Electrical and absorption infra-red spectroscopic analysis constitutes strong evidence for oxygen diffusion into the tin oxide grains. The model is then extended to include oxygen in- and out-diffusion. Thus, it is possible to explain the “long-term” resistance drift in oxygen for fully depleted grained samples in terms of tunneling through the double barrier.