Artículos de revistas
Hopf braces and Yang-Baxter operators
Fecha
2017-01Registro en:
Angiono, Iván Ezequiel; Galindo Martinez, Cesar Neyit; Vendramin, Claudio Leandro; Hopf braces and Yang-Baxter operators; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 5; 1-2017; 1981-1995
0002-9939
CONICET Digital
CONICET
Autor
Angiono, Iván Ezequiel
Galindo Martinez, Cesar Neyit
Vendramin, Claudio Leandro
Resumen
This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces.