dc.creatorAngiono, Iván Ezequiel
dc.creatorGalindo Martinez, Cesar Neyit
dc.creatorVendramin, Claudio Leandro
dc.date.accessioned2018-08-14T17:45:23Z
dc.date.accessioned2018-11-06T14:29:57Z
dc.date.available2018-08-14T17:45:23Z
dc.date.available2018-11-06T14:29:57Z
dc.date.created2018-08-14T17:45:23Z
dc.date.issued2017-01
dc.identifierAngiono, Iván Ezequiel; Galindo Martinez, Cesar Neyit; Vendramin, Claudio Leandro; Hopf braces and Yang-Baxter operators; American Mathematical Society; Proceedings of the American Mathematical Society; 145; 5; 1-2017; 1981-1995
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11336/55430
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1887079
dc.description.abstractThis paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2017-145-05/S0002-9939-2016-13395-9/home.html
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/proc/13395
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHopf algebras
dc.subjectBraces
dc.subjectYang-Baxter equation
dc.titleHopf braces and Yang-Baxter operators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución