Artículos de revistas
Exponential family Fisher vector for image classification
Fecha
2015-07Registro en:
Sanchez, Jorge Adrian; Redolfi, Javier Andrés; Exponential family Fisher vector for image classification; Elsevier Science; Pattern Recognition Letters; 59; 7-2015; 26-32
0167-8655
1872-7344
CONICET Digital
CONICET
Autor
Sanchez, Jorge Adrian
Redolfi, Javier Andrés
Resumen
One of the fundamental problems in image classification is to devise models that allow us to relate the images to higher-level semantic concepts in an efficient and reliable way. A widely used approach consists on extracting local descriptors from the images and to summarize them into an image-level representation. Within this framework, the Fisher vector (FV) is one of the most robust signatures to date. In the FV, local descriptors are modeled as samples drawn from a mixture of Gaussian pdfs. An image is represented by a gradient vector characterizing the distributions of samples w.r.t. the model. Equipped with robust features like SIFT, the FV has shown state-of-the-art performance on different recognition problems. However, it is not clear how it should be applied when the feature space is clearly non-Euclidean, leading to heuristics that ignore the underlying structure of the space. In this paper we generalize the Gaussian FV to a broader family of distributions known as the exponential family. The model, termed exponential family Fisher vectors (eFV), provides a unified framework from which rich and powerful representations can be derived. Experimental results show the generality and flexibility of our approach.