dc.creatorSanchez, Jorge Adrian
dc.creatorRedolfi, Javier Andrés
dc.date.accessioned2018-09-17T13:40:46Z
dc.date.accessioned2018-11-06T14:17:55Z
dc.date.available2018-09-17T13:40:46Z
dc.date.available2018-11-06T14:17:55Z
dc.date.created2018-09-17T13:40:46Z
dc.date.issued2015-07
dc.identifierSanchez, Jorge Adrian; Redolfi, Javier Andrés; Exponential family Fisher vector for image classification; Elsevier Science; Pattern Recognition Letters; 59; 7-2015; 26-32
dc.identifier0167-8655
dc.identifierhttp://hdl.handle.net/11336/59825
dc.identifier1872-7344
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1884947
dc.description.abstractOne of the fundamental problems in image classification is to devise models that allow us to relate the images to higher-level semantic concepts in an efficient and reliable way. A widely used approach consists on extracting local descriptors from the images and to summarize them into an image-level representation. Within this framework, the Fisher vector (FV) is one of the most robust signatures to date. In the FV, local descriptors are modeled as samples drawn from a mixture of Gaussian pdfs. An image is represented by a gradient vector characterizing the distributions of samples w.r.t. the model. Equipped with robust features like SIFT, the FV has shown state-of-the-art performance on different recognition problems. However, it is not clear how it should be applied when the feature space is clearly non-Euclidean, leading to heuristics that ignore the underlying structure of the space. In this paper we generalize the Gaussian FV to a broader family of distributions known as the exponential family. The model, termed exponential family Fisher vectors (eFV), provides a unified framework from which rich and powerful representations can be derived. Experimental results show the generality and flexibility of our approach.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865515000811
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.patrec.2015.03.010
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEXPONENTIAL FAMILY
dc.subjectFISHER KERNEL
dc.subjectFISHER VECTORS
dc.subjectIMAGE CLASSIFICATION
dc.titleExponential family Fisher vector for image classification
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución