Artículos de revistas
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
Fecha
2016-07Registro en:
Behrndt, Jussi; Leben, Leslie; Martinez Peria, Francisco Dardo; Möws, Roland; Trunk, Carsten; Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces; Elsevier; Journal Of Mathematical Analysis And Applications; 439; 2; 7-2016; 864-895
0022-247X
CONICET Digital
CONICET
Autor
Behrndt, Jussi
Leben, Leslie
Martinez Peria, Francisco Dardo
Möws, Roland
Trunk, Carsten
Resumen
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems.