dc.creatorBehrndt, Jussi
dc.creatorLeben, Leslie
dc.creatorMartinez Peria, Francisco Dardo
dc.creatorMöws, Roland
dc.creatorTrunk, Carsten
dc.date.accessioned2017-06-28T18:31:36Z
dc.date.accessioned2018-11-06T13:36:18Z
dc.date.available2017-06-28T18:31:36Z
dc.date.available2018-11-06T13:36:18Z
dc.date.created2017-06-28T18:31:36Z
dc.date.issued2016-07
dc.identifierBehrndt, Jussi; Leben, Leslie; Martinez Peria, Francisco Dardo; Möws, Roland; Trunk, Carsten; Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces; Elsevier; Journal Of Mathematical Analysis And Applications; 439; 2; 7-2016; 864-895
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/19011
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1877327
dc.description.abstractLet A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2016.03.012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X16002304?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectKREIN SPACE
dc.subjectNONNEGATIVE OPERATOR
dc.subjectFINITE RANK PERTURBATION
dc.subjectEIGENVALUES
dc.titleSharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución