Artículos de revistas
SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions
Fecha
2017-12Registro en:
Giordano, Pablo César; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 171; 12-2017; 198-206
0169-7439
CONICET Digital
CONICET
Autor
Giordano, Pablo César
Goicoechea, Hector Casimiro
Olivieri, Alejandro Cesar
Resumen
SRO_ANN, a MatLab® toolbox for implementing multiple surface response optimization by artificial neural networks (SRO_ANN) is presented. Radial basis functions, a type of artificial neural networks, are applied through an easily managed graphical user interface. A detailed description of the interface is provided, including a simulated and two literature examples which allow one to show the potentiality of the software. The discussed experimental examples correspond to: (1) the maximization of the research octane number (RON) of fuels, influenced by three factors (reaction temperature, operating pressure and low liquid hourly space velocity), and (2) the optimization of the calcification process for diced tomatoes, evaluated through three different responses (calcium content, firmness and pH), which are affected by three factors (calcium concentration, solution temperature and treatment time). The results show that the application of a nonparametric tool can enhance the performance of optimization modeling tasks.