dc.creatorGiordano, Pablo César
dc.creatorGoicoechea, Hector Casimiro
dc.creatorOlivieri, Alejandro Cesar
dc.date.accessioned2018-09-06T19:16:09Z
dc.date.accessioned2018-11-06T13:21:25Z
dc.date.available2018-09-06T19:16:09Z
dc.date.available2018-11-06T13:21:25Z
dc.date.created2018-09-06T19:16:09Z
dc.date.issued2017-12
dc.identifierGiordano, Pablo César; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; SRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 171; 12-2017; 198-206
dc.identifier0169-7439
dc.identifierhttp://hdl.handle.net/11336/58594
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1874656
dc.description.abstractSRO_ANN, a MatLab® toolbox for implementing multiple surface response optimization by artificial neural networks (SRO_ANN) is presented. Radial basis functions, a type of artificial neural networks, are applied through an easily managed graphical user interface. A detailed description of the interface is provided, including a simulated and two literature examples which allow one to show the potentiality of the software. The discussed experimental examples correspond to: (1) the maximization of the research octane number (RON) of fuels, influenced by three factors (reaction temperature, operating pressure and low liquid hourly space velocity), and (2) the optimization of the calcification process for diced tomatoes, evaluated through three different responses (calcium content, firmness and pH), which are affected by three factors (calcium concentration, solution temperature and treatment time). The results show that the application of a nonparametric tool can enhance the performance of optimization modeling tasks.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.chemolab.2017.11.004
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016974391730401X
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectARTIFICIAL NEURAL NETWORKS (ANN)
dc.subjectDESIRABILITY FUNCTION
dc.subjectRESPONSE SURFACE METHODOLOGY (RSM)
dc.titleSRO_ANN: An integrated MatLab toolbox for multiple surface response optimization using radial basis functions
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución