Artículos de revistas
The Alekseevskii conjecture in low dimensions
Fecha
2017-02Registro en:
Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309
0025-5831
CONICET Digital
CONICET
Autor
Arroyo, Romina Melisa
Lafuente, Ramiro Augusto
Resumen
The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.