dc.creatorArroyo, Romina Melisa
dc.creatorLafuente, Ramiro Augusto
dc.date.accessioned2018-09-17T20:50:52Z
dc.date.accessioned2018-11-06T13:13:02Z
dc.date.available2018-09-17T20:50:52Z
dc.date.available2018-11-06T13:13:02Z
dc.date.created2018-09-17T20:50:52Z
dc.date.issued2017-02
dc.identifierArroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309
dc.identifier0025-5831
dc.identifierhttp://hdl.handle.net/11336/59984
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1873169
dc.description.abstractThe long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-016-1386-1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectALEKSEEVSKII CONJECTURE
dc.subjectLOW DIMENSIONS
dc.subjectEINSTEIN METRICS
dc.subjectNON-COMPACT HOMOGENEOUS SPACES
dc.titleThe Alekseevskii conjecture in low dimensions
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución