dc.creator | Arroyo, Romina Melisa | |
dc.creator | Lafuente, Ramiro Augusto | |
dc.date.accessioned | 2018-09-17T20:50:52Z | |
dc.date.accessioned | 2018-11-06T13:13:02Z | |
dc.date.available | 2018-09-17T20:50:52Z | |
dc.date.available | 2018-11-06T13:13:02Z | |
dc.date.created | 2018-09-17T20:50:52Z | |
dc.date.issued | 2017-02 | |
dc.identifier | Arroyo, Romina Melisa; Lafuente, Ramiro Augusto; The Alekseevskii conjecture in low dimensions; Springer; Mathematische Annalen; 367; 1-2; 2-2017; 283-309 | |
dc.identifier | 0025-5831 | |
dc.identifier | http://hdl.handle.net/11336/59984 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1873169 | |
dc.description.abstract | The long-standing Alekseevskii conjecture states that a connected homogeneous Einstein space G / K of negative scalar curvature must be diffeomorphic to Rn. This was known to be true only in dimensions up to 5, and in dimension 6 for non-semisimple G. In this work we prove that this is also the case in dimensions up to 10 when G is not semisimple. For arbitrary G, besides 5 possible exceptions, we show that the conjecture holds up to dimension 8. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00208-016-1386-1 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-016-1386-1 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ALEKSEEVSKII CONJECTURE | |
dc.subject | LOW DIMENSIONS | |
dc.subject | EINSTEIN METRICS | |
dc.subject | NON-COMPACT HOMOGENEOUS SPACES | |
dc.title | The Alekseevskii conjecture in low dimensions | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |