Artículos de revistas
Volterra-type models for nonlinear systems identification
Fecha
2014-05Registro en:
Schmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis; Volterra-type models for nonlinear systems identification; Elsevier Science Inc; Applied Mathematical Modelling; 38; 9-10; 5-2014; 2414-2421
0307-904X
Autor
Schmidt, Christian Andrés
Biagiola, Silvina Ines
Cousseau, Juan Edmundo
Figueroa, Jose Luis
Resumen
In this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models.