dc.creatorSchmidt, Christian Andrés
dc.creatorBiagiola, Silvina Ines
dc.creatorCousseau, Juan Edmundo
dc.creatorFigueroa, Jose Luis
dc.date.accessioned2017-01-24T14:58:09Z
dc.date.accessioned2018-11-06T11:37:52Z
dc.date.available2017-01-24T14:58:09Z
dc.date.available2018-11-06T11:37:52Z
dc.date.created2017-01-24T14:58:09Z
dc.date.issued2014-05
dc.identifierSchmidt, Christian Andrés; Biagiola, Silvina Ines; Cousseau, Juan Edmundo; Figueroa, Jose Luis; Volterra-type models for nonlinear systems identification; Elsevier Science Inc; Applied Mathematical Modelling; 38; 9-10; 5-2014; 2414-2421
dc.identifier0307-904X
dc.identifierhttp://hdl.handle.net/11336/11777
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1856295
dc.description.abstractIn this work, multi-input multi-output (MIMO) nonlinear process identification is dealt with. In particular, two Volterra-type models are discussed in the context of system identification. These models are: Memory Polynomial (MP) and Modified Generalized Memory Polynomial (MGMP), which can be considered as a generalization of Hammerstein and Wiener models, respectively. Both of them are appealing representations as they allow to describe larger model sets with less parametric complexity. Simulation example is given to illustrate the quality of the obtained models.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13006537
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apm.2013.10.041
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNONLINEAR IDENTIFICATION
dc.subjectVOLTERRA-TYPE MODELS
dc.subjectWIENER MODEL
dc.subjectHAMMERSTEIN MODEL
dc.titleVolterra-type models for nonlinear systems identification
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución