dc.creator | Calvaruso, Giovanni | |
dc.creator | Ovando, Gabriela Paola | |
dc.date.accessioned | 2018-07-26T17:56:29Z | |
dc.date.accessioned | 2018-11-06T11:32:08Z | |
dc.date.available | 2018-07-26T17:56:29Z | |
dc.date.available | 2018-11-06T11:32:08Z | |
dc.date.created | 2018-07-26T17:56:29Z | |
dc.date.issued | 2018-01 | |
dc.identifier | Calvaruso, Giovanni; Ovando, Gabriela Paola; From almost (para)-complex structures to affine structures on Lie groups; Springer; Manuscripta Mathematica; 155; 1-2; 1-2018; 89-113 | |
dc.identifier | 0025-2611 | |
dc.identifier | http://hdl.handle.net/11336/53181 | |
dc.identifier | 1432-1785 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1854380 | |
dc.description.abstract | Let G= H⋉ K denote a semidirect product Lie group with Lie algebra g= h⊕ k, where k is an ideal and h is a subalgebra of the same dimension as k. There exist some natural split isomorphisms S with S2= ± Id on g: given any linear isomorphism j: h→ k, we get the almost complex structure J(x, v) = (- j- 1v, jx) and the almost paracomplex structure E(x, v) = (j- 1v, jx). In this work we show that the integrability of the structures J and E above is equivalent to the existence of a left-invariant torsion-free connection ∇ on G such that ∇ J= 0 = ∇ E and also to the existence of an affine structure on H. Applications include complex, paracomplex and symplectic geometries. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00229-017-0934-7 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00229-017-0934-7 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1604.08433 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Complex and paracomplex structures | |
dc.subject | Complex product structures | |
dc.subject | Affine structures | |
dc.subject | Left-symmetric algebras | |
dc.title | From almost (para)-complex structures to affine structures on Lie groups | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |