dc.creatorCalvaruso, Giovanni
dc.creatorOvando, Gabriela Paola
dc.date.accessioned2018-07-26T17:56:29Z
dc.date.accessioned2018-11-06T11:32:08Z
dc.date.available2018-07-26T17:56:29Z
dc.date.available2018-11-06T11:32:08Z
dc.date.created2018-07-26T17:56:29Z
dc.date.issued2018-01
dc.identifierCalvaruso, Giovanni; Ovando, Gabriela Paola; From almost (para)-complex structures to affine structures on Lie groups; Springer; Manuscripta Mathematica; 155; 1-2; 1-2018; 89-113
dc.identifier0025-2611
dc.identifierhttp://hdl.handle.net/11336/53181
dc.identifier1432-1785
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1854380
dc.description.abstractLet G= H⋉ K denote a semidirect product Lie group with Lie algebra g= h⊕ k, where k is an ideal and h is a subalgebra of the same dimension as k. There exist some natural split isomorphisms S with S2= ± Id on g: given any linear isomorphism j: h→ k, we get the almost complex structure J(x, v) = (- j- 1v, jx) and the almost paracomplex structure E(x, v) = (j- 1v, jx). In this work we show that the integrability of the structures J and E above is equivalent to the existence of a left-invariant torsion-free connection ∇ on G such that ∇ J= 0 = ∇ E and also to the existence of an affine structure on H. Applications include complex, paracomplex and symplectic geometries.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00229-017-0934-7
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00229-017-0934-7
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1604.08433
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComplex and paracomplex structures
dc.subjectComplex product structures
dc.subjectAffine structures
dc.subjectLeft-symmetric algebras
dc.titleFrom almost (para)-complex structures to affine structures on Lie groups
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución