Artículos de revistas
DOA Estimation using Random Linear Arrays via Compressive Sensing
Fecha
2014-08Registro en:
Hurtado, Martin; Muravchik, Carlos Horacio; Pazos, Sebastian; DOA Estimation using Random Linear Arrays via Compressive Sensing; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 859-863
1548-0992
CONICET Digital
CONICET
Autor
Pazos, Sebastian
Hurtado, Martin
Muravchik, Carlos Horacio
Resumen
In this article we analyze the performance of nonuniform linear arrays for Direction of Arrival (DOA) estimation. We use different classes of sparse recovery algorithms to estimate the direction of arrival of the signal sources and its information. We focus on three array configurations, a structured or virtual array with prefixed potential locations for the elements, a random array and a random array with a restriction on the minimum distance between elements. We provide simulations of the performance of each configuration under these algorithms for different values of aperture, and number of signal sources.