dc.creatorPazos, Sebastian
dc.creatorHurtado, Martin
dc.creatorMuravchik, Carlos Horacio
dc.date.accessioned2018-01-11T13:57:55Z
dc.date.accessioned2018-11-06T11:21:40Z
dc.date.available2018-01-11T13:57:55Z
dc.date.available2018-11-06T11:21:40Z
dc.date.created2018-01-11T13:57:55Z
dc.date.issued2014-08
dc.identifierHurtado, Martin; Muravchik, Carlos Horacio; Pazos, Sebastian; DOA Estimation using Random Linear Arrays via Compressive Sensing; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 859-863
dc.identifier1548-0992
dc.identifierhttp://hdl.handle.net/11336/32941
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1849427
dc.description.abstractIn this article we analyze the performance of nonuniform linear arrays for Direction of Arrival (DOA) estimation. We use different classes of sparse recovery algorithms to estimate the direction of arrival of the signal sources and its information. We focus on three array configurations, a structured or virtual array with prefixed potential locations for the elements, a random array and a random array with a restriction on the minimum distance between elements. We provide simulations of the performance of each configuration under these algorithms for different values of aperture, and number of signal sources.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2014.6872896
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6872896/
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectEducational institutions
dc.subjectCompressed sensing
dc.subjectArray signal processing
dc.subjectDirection-of-arrival estimation
dc.subjectEstimation
dc.subjectBayes methods
dc.subjectElectrical engineering
dc.titleDOA Estimation using Random Linear Arrays via Compressive Sensing
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución