dc.date.accessioned2018-08-24T12:45:15Z
dc.date.available2018-08-24T12:45:15Z
dc.date.created2018-08-24T12:45:15Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/10533/219532
dc.identifier1130796
dc.identifierWOS:000378980900014
dc.description.abstractIn earlier work the authors determined the graded Witt kernel GW(q)(E/F) = ker(GW(q)F -> GW(q)E) when E/F is a biquadratic extension in characteristic 2 by calculating the cohomological kernel H-2*(E/F) = ker(H-2*F -> H-2*E). In this paper this result is extended to the cases where [E : F] = 4 and E is either cyclic or has dihedral Galois closure. In addition, the use of Izhboldin's Q-groups is generalized to obtain six-term exact sequences that describe the behavior of these graded rings whenever four-term exact sequences and homotopies describe the arithmetic of the extension. These tools are valid in characteristic p, although the applications here are in characteristic 2. (C) 2016 Published by Elsevier Inc. Keywords. Author Keywords:Quadratic forms; Differential forms; Witt groups; Izhboldin groups
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.jalgebra.2016.04.024
dc.relation10.1016/j.jalgebra.2016.04.024
dc.relationinfo:eu-repo/grantAgreement//1130796
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93477
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleCohomology and graded Witt group kernels for extensions of degree four in characteristic two
dc.typeArticulo


Este ítem pertenece a la siguiente institución