dc.date.accessioned2018-07-20T19:50:39Z
dc.date.available2018-07-20T19:50:39Z
dc.date.created2018-07-20T19:50:39Z
dc.date.issued2016
dc.identifierhttp://hdl.handle.net/10533/218862
dc.identifier1130682
dc.identifierWOS:000374729500004
dc.description.abstractThis work presents a non-parametric method based on a principal component analysis (PCA) and a parametric one based on artificial neural networks (ANN) to remove continuous baseline features from spectra. The non-parametric method estimates the baseline based on a set of sampled basis vectors obtained from PCA applied over a previously composed continuous spectra learning matrix. The parametric method, however, uses an ANN to filter out the baseline. Previous studies have demonstrated that this method is one of the most effective for baseline removal. The evaluation of both methods was carried out by using a synthetic database designed for benchmarking baseline removal algorithms, containing 100 synthetic composed spectra at different signal-to-baseline ratio (SBR), signal-to-noise ratio (SNR), and baseline slopes. In addition to deomonstrating the utility of the proposed methods and to compare them in a real application, a spectral data set measured from a flame radiation process was used. Several performance metrics such as correlation coefficient, chi-square value, and goodness-of-fit coefficient were calculated to quantify and compare both algorithms. Results demonstrate that the PCA-based method outperforms the one based on ANN both in terms of performance and simplicity. Keywords .Author Keywords:Automated baseline estimation; Baseline removal; Sampled bases; Learning matrix; Principal component analysis (PCA); Artificial neural networks (ANN)
dc.languageeng
dc.relationhttps://www.ncbi.nlm.nih.gov/pubmed/26917856
dc.relation10.1177/0003702816631293
dc.relationinfo:eu-repo/grantAgreement//1130682
dc.relationinfo:eu-repo/semantics/dataset/hdl.handle.net/10533/93477
dc.relationinstname: Conicyt
dc.relationreponame: Repositorio Digital RI2.0
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleComparative Analysis of a Principal Component Analysis-Based and an Artificial Neural Network-Based Method for Baseline Removal
dc.typeArticulo


Este ítem pertenece a la siguiente institución