Artículos de revistas
Strongly damped wave equation and its Yosida approximations
Fecha
2015Registro en:
Topological methods in nonlinear analysis, Torun, v. 46, n. 2, p. 563-602, 2015
1230-3429
10.12775/TMNA.2015.059
Autor
Bortolan, Matheus C.
Carvalho, Alexandre Nolasco de
Institución
Resumen
In this work we study the continuity for the family of global attractors of the equations 'U IND. TT' - 'delta' u - 'delta' 'U IND. T' - 'épsilon' 'delta' 'U IND. TT' = f(u) at 'épsilon' = 0 when 'ômega' is a bounded smooth domain of 'R POT. N', with n '> OU =' 3, and the nonlinearity f satisfies a subcritical growth condition. Also, we obtain an uniform bound for the fractal dimension of these global attractors.