dc.creator | Bortolan, Matheus C. | |
dc.creator | Carvalho, Alexandre Nolasco de | |
dc.date.accessioned | 2016-10-20T17:47:44Z | |
dc.date.accessioned | 2018-07-04T17:11:17Z | |
dc.date.available | 2016-10-20T17:47:44Z | |
dc.date.available | 2018-07-04T17:11:17Z | |
dc.date.created | 2016-10-20T17:47:44Z | |
dc.date.issued | 2015 | |
dc.identifier | Topological methods in nonlinear analysis, Torun, v. 46, n. 2, p. 563-602, 2015 | |
dc.identifier | 1230-3429 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/51042 | |
dc.identifier | 10.12775/TMNA.2015.059 | |
dc.identifier | http://projecteuclid.org/euclid.tmna/1458588652 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1645840 | |
dc.description.abstract | In this work we study the continuity for the family of global attractors of the equations 'U IND. TT' - 'delta' u - 'delta' 'U IND. T' - 'épsilon' 'delta' 'U IND. TT' = f(u) at 'épsilon' = 0 when 'ômega' is a bounded smooth domain of 'R POT. N', with n '> OU =' 3, and the nonlinearity f satisfies a subcritical growth condition. Also, we obtain an uniform bound for the fractal dimension of these global attractors. | |
dc.language | eng | |
dc.publisher | Juliusz Schauder Center for Nonlinear Studies | |
dc.publisher | Torun | |
dc.relation | Topological methods in nonlinear analysis | |
dc.rights | Copyright Juliusz Schauder Centre for Nonlinear Studies | |
dc.rights | closedAccess | |
dc.subject | Global attractor | |
dc.subject | Yosida approximation | |
dc.subject | continuity of attractors | |
dc.subject | fractal dimension | |
dc.title | Strongly damped wave equation and its Yosida approximations | |
dc.type | Artículos de revistas | |