dc.creatorANCIAUX, Henri
dc.creatorGUILFOYLE, Brendan
dc.creatorROMON, Pascal
dc.date.accessioned2012-10-20T04:50:55Z
dc.date.accessioned2018-07-04T15:47:07Z
dc.date.available2012-10-20T04:50:55Z
dc.date.available2018-07-04T15:47:07Z
dc.date.created2012-10-20T04:50:55Z
dc.date.issued2011
dc.identifierJOURNAL OF GEOMETRY AND PHYSICS, v.61, n.1, p.237-247, 2011
dc.identifier0393-0440
dc.identifierhttp://producao.usp.br/handle/BDPI/30697
dc.identifier10.1016/j.geomphys.2010.09.017
dc.identifierhttp://dx.doi.org/10.1016/j.geomphys.2010.09.017
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627336
dc.description.abstractGiven an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationJournal of Geometry and Physics
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectLagrangian surfaces
dc.subjectMinimal surfaces
dc.subjectHamiltonian stationary surfaces
dc.subjectPseudo-Kahler metric
dc.titleMinimal Lagrangian surfaces in the tangent bundle of a Riemannian surface
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución