Artículos de revistas
On the extent of star countable spaces
Fecha
2011Registro en:
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, v.9, n.3, p.603-615, 2011
1895-1074
10.2478/s11533-011-0018-y
Autor
ALAS, Ofelia T.
JUNQUEIRA, Lucia R.
MILL, Jan van
TKACHUK, Vladimir V.
WILSON, Richard G.
Institución
Resumen
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
IMAGINARY SPACE VS REAL SPACE IN THE NOBEL PRIZE WINNERS: LE CLÉZIO Y GARCÍA MÁRQUEZ
Alonso Sutil, María Cruz -
Sobolev spaces on locally compact groups: compact embeddings and local spaces
Gorka, Przemyslaw; Kostrzewa, Tomasz; Reyes, Enrique G. -
Between outer space and human space: knowing space as the origin of anthropology
Sauter, M. J. (Michael)