dc.creatorALAS, Ofelia T.
dc.creatorJUNQUEIRA, Lucia R.
dc.creatorMILL, Jan van
dc.creatorTKACHUK, Vladimir V.
dc.creatorWILSON, Richard G.
dc.date.accessioned2012-10-20T04:50:49Z
dc.date.accessioned2018-07-04T15:47:01Z
dc.date.available2012-10-20T04:50:49Z
dc.date.available2018-07-04T15:47:01Z
dc.date.created2012-10-20T04:50:49Z
dc.date.issued2011
dc.identifierCENTRAL EUROPEAN JOURNAL OF MATHEMATICS, v.9, n.3, p.603-615, 2011
dc.identifier1895-1074
dc.identifierhttp://producao.usp.br/handle/BDPI/30680
dc.identifier10.2478/s11533-011-0018-y
dc.identifierhttp://dx.doi.org/10.2478/s11533-011-0018-y
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627319
dc.description.abstractFor a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
dc.languageeng
dc.publisherVERSITA
dc.relationCentral European Journal of Mathematics
dc.rightsCopyright VERSITA
dc.rightsrestrictedAccess
dc.subjectLindelof property
dc.subjectExtent
dc.subjectStar properties
dc.subjectStar countable spaces
dc.subjectStar Lindelof spaces
dc.subjectPseudocompact spaces
dc.subjectCountably compact spaces
dc.subjectFunction spaces
dc.subjectkappa-monolithic spaces
dc.subjectProducts of ordinals
dc.subjectP-spaces
dc.subjectMetalindelof spaces
dc.subjectDiscrete subspaces
dc.subjectOpen expansions
dc.titleOn the extent of star countable spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución