Artículos de revistas
Hyperbolic unit groups and quaternion algebras
Fecha
2009Registro en:
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, v.119, n.1, p.9-22, 2009
0253-4142
Autor
JURIAANS, S. O.
PASSI, I. B. S.
SOUZA FILHO, A. C.
Institución
Resumen
We classify the quadratic extensions K = Q[root d] and the finite groups G for which the group ring o(K)[G] of G over the ring o(K) of integers of K has the property that the group U(1)(o(K)[G]) of units of augmentation 1 is hyperbolic. We also construct units in the Z-order H(o(K)) of the quaternion algebra H(K) = (-1, -1/K), when it is a division algebra.